
RESEARCH POSTER PRESENTATION DESIGN © 2011

www.PosterPresentations.com

Sibling-First Recursive Graph Drawing for Java Bytecode

Overview

References

Acknowledgments

University of California, Irvine

Md. Jawaherul Alam, Michael T. Goodrich, and Timothy Johnson
Donald Bren School of Information and Computer Sciences

This article reports on work supported by the Defense Advanced Research Projects
Agency under agreement no. AFRL FA8750-15-2- 0092. The views expressed are
those of the authors and do not reflect the official policy or position of the Department
of Defense or the U.S. Government. This work was also supported in part by the U.S.
National Science Foundation under grants 1228639 and 1526631. In addition, we
would like to thank David Eppstein, Matthew Might, William Byrd, Michael Adams,
and Guannan Wei for helpful discussions regarding the topics of this paper.

Email contacts: {alamm1,goodrich,tujohnso}@uci.edu

(Full paper)

(a)

(b) (c)

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

switch

1:

stmt2;

stmt1;

a :

b :
c :

2:

stmt4;

stmt3;d :

e :

3:

stmt6;

stmt5;f :

g :

default:
stmt8;

stmt7;h :

i :

(expr)

case

case

case

1

2

3

4

5

6

7

8

9

1

2 3 4 5

6 7 8 9

The SFR ordering Case study 2

Case study 1

We describe a tool, the JVM abstracting abstract machine
(Jaam) Visualizer, or “J-Viz” for short, which is intended
for use by security analysts to find algorithmic
vulnerabilities through the exploration of graphs derived
from Java bytecode.
Our tool accomplishes this by constructing a graph
representing the control flow of the program and
displaying it interactively using a canonical ordering we
call the sibling-first recursive ordering.

We use the following algorithm:
1. Construct the control flow graph using 1-CFA.
2. Draw a spanning tree using the sibling-first recursive

ordering, putting each branch in a separate lane.
3. Draw edges that are not in spanning tree.
4. Highlight suspicious areas of the graph.
5. Group nodes hierarchically.

Control Flow Analysis (CFA)
Our desired properties for a control flow graph are:
- Soundness: Including every possible execution path
- Precision: Excluding impossible execution paths
 
The k-CFA hierarchy [1] provides a range of algorithms
for constructing a sound control flow graph of a program,
trading off increased precision against increased size of
the graph produced.
For a given k, each state stores a single instruction and the
most recent k function calls.

A recursive factorial function analyzed using 1-CFA. The two highlighted
nodes represent the same line of code, but are called in different contexts.

The DFS and SFR algorithms

(a) A code segment with a switch statement
(b) Tree based on SFR ordering
(c) Tree based on DFS ordering

1. Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,  
Carnegie Mellon University (1991)

2. Wei, T., Mao, J., Zou, W., Chen, Y.: A new algorithm for identifying loops in
decompilation. In: Static Analysis, pp. 170–183. Springer (2007)

We require that a node can only be drawn directly below
another node if it is a descendant in the SFR tree. This
divides our graph into lanes, as in the figure below.

Tree layout

This preserves the user’s
mental model by
maintaining the relative
positioning between
nodes, even when
arbitrary connected
subsets of nodes are
collapsed or expanded.

Neglecting this condition can produce collisions, such
as in the following example where nodes a and b are
collapsed to a single node.

Final processing

Edges not in our SFR tree are drawn as curves if they
point upward, and straight lines if they point downward.

We then highlight the nodes based on the number of
nested loops containing them, using an algorithm from [2].

Lastly, we collapse groups of nodes in three ways:
- Chains
- Methods
- Chains of methods

This program checks a password, one character at a time.
But it exits as soon as it finds the first incorrect character,
allowing for a timing attack that can determine the
password with only a handful of guesses.

This can be found quickly because our graph shows all of
the possible exits from the loop.

The next two programs were provided as part of the
DARPA challenge. They are much larger, containing
thousands of lines of code.

But in each one, the vulnerability appears in the red
portion of the graph, allowing the human analyst to
check only a small fraction of the code.

http://uci.edu

