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The SFR ordering Case study 2

Case study 1

We describe a tool, the JVM abstracting abstract machine 
(Jaam) Visualizer, or “J-Viz” for short, which is intended 
for use by security analysts to find algorithmic 
vulnerabilities through the exploration of graphs derived 
from Java bytecode.
Our tool accomplishes this by constructing a graph 
representing the control flow of the program and 
displaying it interactively using a canonical ordering we 
call the sibling-first recursive ordering.

We use the following algorithm:
1. Construct the control flow graph using 1-CFA.
2. Draw a spanning tree using the sibling-first recursive 

ordering, putting each branch in a separate lane.
3. Draw edges that are not in spanning tree.
4. Highlight suspicious areas of the graph.
5. Group nodes hierarchically.

Control Flow Analysis (CFA)
Our desired properties for a control flow graph are:
- Soundness: Including every possible execution path
- Precision: Excluding impossible execution paths
 
The k-CFA hierarchy [1] provides a range of algorithms 
for constructing a sound control flow graph of a program, 
trading off increased precision against increased size of 
the graph produced.
For a given k, each state stores a single instruction and the 
most recent k function calls.

A recursive factorial function analyzed using 1-CFA. The two highlighted 
nodes represent the same line of code, but are called in different contexts.

The DFS and SFR algorithms

(a)  A code segment with a switch statement
(b)  Tree based on SFR ordering
(c)  Tree based on DFS ordering
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We require that a node can only be drawn directly below 
another node if it is a descendant in the SFR tree. This 
divides our graph into lanes, as in the figure below.

Tree layout

This preserves the user’s 
mental model by 
maintaining the relative 
positioning between 
nodes, even when 
arbitrary connected 
subsets of nodes are 
collapsed or expanded.

Neglecting this condition can produce collisions, such 
as in the following example where nodes a and b are 
collapsed to a single node.

Final processing

Edges not in our SFR tree are drawn as curves if they 
point upward, and straight lines if they point downward.

We then highlight the nodes based on the number of 
nested loops containing them, using an algorithm from [2].

Lastly, we collapse groups of nodes in three ways:
- Chains
- Methods
- Chains of methods

This program checks a password, one character at a time. 
But it exits as soon as it finds the first incorrect character, 
allowing for a timing attack that can determine the 
password with only a handful of guesses.

This can be found quickly because our graph shows all of 
the possible exits from the loop.

The next two programs were provided as part of the 
DARPA challenge. They are much larger, containing 
thousands of lines of code.

But in each one, the vulnerability appears in the red 
portion of the graph, allowing the human analyst to 
check only a small fraction of the code.
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