

A Distributed Multi-Level Force-directed algorithm

MULTI-GILA

24th International Symposium On Graph Drawing And Network Visualization, September 19-21, Athens, Greece

Objective

- Using emerging distributed computing platforms
- Running on inexpensive PaaS environments

Apache Giraph

- Runs on Hadoop
- **BSP** model
- Think-Like-A-Vertex

Think Like a Vertex

Iterative approach

```
for(Edge e in edges){
 Get s & t
 coordinates from e
 Compute their
 distance \Delta
 Update s position
 using \Delta and the
 force function
```

A single entity knows the entire topology

Hard to scale

TLAV approach

```
for(Vertex v in
neighbours){
  Get v coordinates
  Compute the
  distance \Delta
  Update v position
  using \Delta and the
  force function
```

- Whole topology is unknown
- **Easier** to scale

Distributed Design Challenges

- What does TLAV mean?
 - Vertex perspective
 - Messages exchange with neighbors
- **Limitations**
 - Vertices store a small amount of data
 - ¿ Light communication load (i.e. light messages)
 - Global variables are permitted, but expensive
- Infrastructure overhead

Related Work

Mueller et al., 2006

- Complex network infrastructure
 - Computing and rendering nodes
- Multi monitor visualization
- Tested on graph up to 8k nodes

Tikhonova and Ma, 2008

- 260,385 edges graph in 40 minutes
 - PSC's BigBen Cray XT3 cluster, 32 processors

Related Work

Hinge and Auber, 2015

- Force directed layout algorithm on GraphX
- Repulsive forces are approximated using centroids
- § 8k vertices and 35k edges graph drawn in 5 hours
 - € 16 machines, 24 cores and 48GB Ram each

Arleo et al., 2015

- "Gila" (former Clint)
- The first single-level FD layout algorithm on Giraph
- Performance was comparable to a centralized FD (Fruchterman-Reingold, 1991)
- 3 1.5M edges graph in less than an hour
 - € 10 machines, 4 cores, 30GB Ram each

Placement & Layout

Placement & Layout

Placement & Layout

Our Contribution

- First distributed multi-level force-directed layout algorithm
 - Simplemented on Giraph
 - Single level layout provided by GILA
- Experimental evaluation
 - Small regular graphs
 - Medium sized graphs (up to 1.5M edges)
 - Large graphs (up to ~11M edges)

Algorithm Overview

Key-Ideas

- Coarse hierarchy generation inspired by FM³ (Hachul-Junger, 2004)
 - Distributed Merger
 - Distributed Placer
 - Designed to have a low impact on total running time
- Dynamic single-level layout tuning
 - Coarse levels will have more accurate drawings
 - Allows us to scale to bigger graphs

Multi-Gila Pipeline

- Pruning
- Partitioning
- Component Discovery

Multi-Level layout

- Distributed Solar Merger
- Distributed Solar Placer
- Gila (single level layout)

Post-Process

- Graph reconstruction
- Connected components arrangement

Coarsening Phase

- Partitioning of the input graph into subgraphs
- These subgraphs are called Galaxies:
 - There is a single Sun
 - Sun's neighbors are called Planets
 - If any, Planets' neighbors are called Moons
 - Max GTD between any two of its nodes: 4
- Galaxies are collapsed onto their sun

Challenges

- No knowledge of the entire graph topology
- Path information must be preserved
- One-vertex pickup not feasible
- It is necessary a network discovery protocol
 - Network exploration using messages

Sun Generation

Sun Generation

Correction procedure

Correction procedure

Sun Offer

Planet Response

Planet Response

Regime Merger

Regime Merger

Regime Merger

Message Delivery

- Process repeated until 100% coverage is achieved
- All paths are found using sun offers
 - Conflict resolutions allow neighbor discovery
- The new level (vertex and edges) is created
- Control passes to the new level

- For each of its planets/moons it knows:
 - On which path they are
 - Where they are on the path
 - A path between two suns is at most of length 5
- Each sun knows the coordinates of its neighbors

Planets/M.	Path	Position
p_1	t_1	1/5
p_1	t_2	1/4
m_1	t_1	2/5

Planets/M.	Path	Position
p_1	t_1	1/5
p_1	t_2	1/4
m_1	t_1	2/5

Planets/M.	Path	Position
p_1	t_1	1/5
p_1	t_2	1/4
m_1	t_1	2/5

Planets/M.	Path	Position
p_1	t_1	1/5
p_1	t_2	1/4
m_1	t_1	2/5

Planets/M.	Path	Position
p_1	t_1	1/5
p_1	t_2	1/4
m_1	t_1	2/5

Planets/M.	Path	Position
p_1	t_1	1/5
p_1	t_2	1/4
m_1	t_1	2/5

Planets/M.	Path	Position
p_1	t_1	1/5
p_1	t_2	1/4
m_1	t_1	2/5

Gila – Single Level Layout

- Based on FR algorithm
- Repulsive forces computed by means of a controlled flooding scheme
 - Spatial decomposition techniques unfeasible
 - § GTD as an approximation of geometric distance
- Layout process takes several iterations
 - Each iteration is split in two phases

Gila – Single Level Layout

Vertices broadcast their coordinates

Propagation

Forces computation

Messages broadcast

 N° of times a message is propagated depends on its time to live (k)

Gila – Single Level Layout

- Overall # of messages: $O(m^k)$
- **A** lot of traffic (and potential overhead)
- Messages are expensive...
- *... but a bigger k implies better quality

Choose k as a tradeoff between quality and cost

Dynamic Gila tuning

Graph size

Experimental results

Test Suite

🐉 Bartel et al., 2011

5 Medium sized graphs

Up to 1.5M edges

3 Large graphs

Up to ~10M edges

Experimental Environment

- Small, synthetic graphs
 - Single machine pseudo-cluster, MacBook laptop
- Medium sized graphs
 - AWS cluster, 5-15 r3.xlarge instances
- ***** Large graphs
 - AWS cluster, 20-30 r3.xlarge instances

4 cores, 30GB Ram

Number of Levels

Grid 40x40 Double Folded

"4elt" Mesh

Medium-Sized Graphs Scalability

Applications: Multi-Gila and Lago*

* Brandes et al., 2012

Applications: Multi-Gila and Lago

Applications: Multi-Gila and Lago

Acic-220 121k vartices E1Ek addes

Conclusions & Future Work

- Multi-Gila: the first distributed multilevel FD
 - Quality of drawings comparable to FM³
 - Exhibits high scalability with large graphs
- Future work
 - New repulsive forces approximation techniques
 - New coarsening techniques

THANKYOU

Multi-Gila Website

http://multigila.graphdrawing.cloud