
Placing Arrows in
Directed Graph Drawings

Carla Binucci1, Markus Chimani2,
Walter Didimo1, Giuseppe Liotta1,

Fabrizio Montecchiani1

1 University of Perugia 2Osnabrück University

Some preliminary considerations

• Directed graphs are used in many application domain.

• Usually a directed edge is represented as a line with
an arrow head at its target.

• This is the prevailing model in software systems.

The Problem

This simple model becomes problematic when several
edges attach to a vertex on a similar trajectory

The Problem

This simple model becomes problematic when several
edges attach to a vertex on a similar trajectory

Our goals

Computing a placement of the arrow heads such that:

(a) They do not overlap other edges or arrow heads.

(b) They are as close as possible to the target vertices of

the edges.

Our Contribution

• Problem formulation & NP-hardness.

• Exact and heuristic algorithms for a discretized
version of the problem.

• A preliminary experimental study.

Example of drawings

Arrows placed by
a common editor

Arrows placed by
our exact method

Related Works

• User studies on the readability of directed-edge representations

₋ [Holten and van Wijk, 2009] [Holten et al., 2011].

• Map labeling problems and in particularly edge labeling problems

₋ [Kakoulis and Tollis, 2001, 2003, 2006, 2013], [Gemsa et al.,
2013], [Gemsa et al., 2014], [van Kreveld et al., 1999], [Marks
and Shieber, 1991], [Strijk and van Kreveld, 2002], [Strijk and
Wolff, 2001], [Wagner et al., 2001]…….

• Research on this topic started at Dagstuhl with the valuable
contribution of Michael Kaufmann and Dorothea Wagner

‐ [Dagstuhl seminar 15052, 2015].

….In what follows….

 Problem formulation &
 NP-hardness

 Algorithms

 Experiments

Modeling arrow heads

v
‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

Modeling arrow heads

‐ Each vertex v is drawn as a circle
(possibly a point).

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

v

Consider a straight-line drawing Γ of a digraph G = (V, E):

e

Modeling arrow heads

v
‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

e

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

Modeling arrow heads

v

e

‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

Modeling arrow heads

v

‐ When Γ is displayed, the arrow of
e is drawn as a triangle inscribed
in the circle.

‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

e

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

Modeling arrow heads

v
‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

e

‐ When Γ is displayed, the arrow of
e is drawn as a triangle inscribed
in the circle.

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

Overlap between objects

Three types of overlap:

• arrow – arrow

• arrow – vertex

• arrow – edge

arrow – arrow

arrow – vertex

arrow – edge e
g

A valid position

A position of an arrow of an edge e is a valid position if it does not
overlap: (P1) any vertex v; (P2) any edge g ≠ e.

arrow – arrow

arrow – vertex

arrow – edge e
g

(P1)

(P2)

A valid placement

A position of an arrow of an edge e is a valid position if it does not
overlap: (P1) any vertex v; (P2) any edge g ≠ e.

An assignment of a valid position to each arrow is called a
valid placement of the arrows.

arrow – arrow

arrow – vertex

arrow – edge e
g

(P1)

(P2)

Overlap number

Given a valid placement, the overlap number is the number of pairs
of overlapping arrows.

arrow – arrow

e
g

Arrow Placement problem

Given a straight-line drawing Γ of a digraph G = (V, E), and two
constants rV and rE compute a valid placement of the arrows (if one
exists) such that the overlap number is minimum

Assume that all circles representing a vertex and an arrow have a
common radius rV and rE, respectively.

NP-hardness

Theorem. The Arrow-Placement problem is NP-hard.

The proof uses a reduction from Planar 3-SAT; the technique is
similar to those used in the context of edge and map labeling
[Kakoulis and Tollis, 2001], [Wolff,2000], [Strijk and Wolff, 2001].

Discrete-Arrow-Placement problem

• Arrow-Placement remains NP-hard even if we fix a finite set of valid
positions for each arrow.

• We call this variant Discrete-Arrow-Placement problem.

• Our algorithms are designed for this variant of the Arrow-Placement
problem.

….In what follows….

 Problem formulation &
 NP-hardness

 Algorithms

 Experiments

Algorithms – basic idea

rV , rE

Γ

• Our algorithms are based on an arrow conflict graph CA.

valid positions

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms

In general, we compute a valid placement with minimum number
of overlaps.

• Our exact algorithm uses an ILP formulation.

• Our heuristic adopts a greedy strategy.

‐ Both techniques try to minimize the distance of each arrow from its
target vertex as a secondary objective.

ILP formulation - variables

• A binary variable for each valid position pe

• A binary variable for each edge (pe, pg) of CA

• The total number of variables is O(|A|2)

epx

ge ppy

epx

ge ppy

ILP formulation

1
 ee

e

Ap

px

1
gege pppp yxx)(),(Age CEpp 

Ee

distance of pe
from the target

 
 


Ee Ap

pe

CEpp

pp

ee

e

Age

ge
xpd

M
y)(

1
min

)(),(

Heuristic

Our heuristic follows a greedy strategy, based on CA.

• We associate a cost c(pe) with each position pe, and then execute
|E| iterations.

• In each iteration:

‐ select a position pe of minimum cost and place the arrow of the
corresponding edge there;

‐ remove all positions of edge e from CA and update the costs of
the remaining positions.

Number of positions

conflicting with pe

epeee Tpd
M

ppc  )(
1

)()(

Heuristic – cost function

Number of already chosen

positions that conflict with pe Distance of pe

from the target.

Number of positions

conflicting with pe

epeee Tpd
M

ppc  )(
1

)()(

Heuristic – cost function

Distance of pe

from the target.

• Positions with minimum number of conflicts and closer to the target
vertex, are preferred.

• Positions conflicting with already placed arrows are chosen only if
necessary.

Number of already chosen

positions that conflict with pe

Heuristic - two variants

• Constructing CA may be time-consuming in practice. We also
considered a simplified version of CA.

 HEURGLOBAL is the heuristic that considers full CA.

 HEURLOCAL is the variant based on the simplified version of CA.

full CA simplified CA

….In what follows….

 Problem formulation &
 NP-hardness

 Algorithms

 Experiments

Experimental settings - Test suite

- 30 instances each;
- 6 graphs for each
number of vertices
n ∈{100,200,...,500}.

• PLANAR: biconnected planar digraphs
with edge density 1.5–2.5

• RANDOM: digraphs with edge density
1.4–1.6 (generated with uniform
probability distribution).

• NORTH: a set of 1,275 real-world digraphs with 10–100 vertices
and average density 1.4.

• Drawing algorithm: OGDF’s FM3 algorithm
[Hachul and Jūnger,2004].

Invalid positions

• If an edge has no valid positions we enforce it to have a unique
(invalid) position for the arrow, the position closest to its target
vertex.

• In the final placement there might be some crossings between an
arrow and a vertex or an edge.

Measures

• Running time.

• Placement time (the time spent to find a placement after CA has
 been computed).

• Overlap number.

• Number of crossings (due to invalid positions).

We compared our algorithms also with a trivial algorithm EDITOR
which simply places each arrow close to its target vertex.

Major findings

• The algorithms are efficient in practice (less than one second);
 the optimum (OPT) is the slowest.

• The placement time of HEURGLOBAL and HEURLOCAL are similar.
1/3 of the overall running time is taken from the construction of CA.
The construction of the simplified version of CA is negligible.

• HEURGLOBAL almost coincides with the optimum in terms of overlaps.
HEURLOCAL also gives very good solutions.

• Our algorithms reduce the number of invalid positions and produce
significantly less crossings than EDITOR.

PLANAR – Running Time

RANDOM – Running Time

NORTH – Running Time

PLANAR – Overlap number

PLANAR – Crossings & invalid positions

Scalability of our techniques

• We extended both Planar and Random sets with 30 larger instances
each (6 graphs for each number of vertices n ∈ {600,700,...,1000}).

• The behavior of our algorithms is similar to that reported for
smaller instances:

‐ The algorithms are still fast (less than two second).

‐ HEURGLOBAL almost coincides with the optimum in terms of overlaps.

‐ Our algorithms still generate significatively less crossings than EDITOR.

‐ Constructing CA remains the most expensive step.

Future work

• Speed-up our techniques for constructing CA using a sweepline or
the labeling techniques in [Wagner et al., 2001].

• Validate the effectiveness of our approach through a user study
(e.g. for tasks that involve path recognition).

• Consider both placing labels and arrow heads.

• Investigate the non-discretized problem variant, both from a
practical and theoretical point of view.

