
Placing Arrows in
Directed Graph Drawings

Carla Binucci1, Markus Chimani2,
Walter Didimo1, Giuseppe Liotta1,

Fabrizio Montecchiani1

1 University of Perugia 2Osnabrück University

Some preliminary considerations

• Directed graphs are used in many application domain.

• Usually a directed edge is represented as a line with
an arrow head at its target.

• This is the prevailing model in software systems.

The Problem

This simple model becomes problematic when several
edges attach to a vertex on a similar trajectory

The Problem

This simple model becomes problematic when several
edges attach to a vertex on a similar trajectory

Our goals

Computing a placement of the arrow heads such that:

(a) They do not overlap other edges or arrow heads.

(b) They are as close as possible to the target vertices of

the edges.

Our Contribution

• Problem formulation & NP-hardness.

• Exact and heuristic algorithms for a discretized
version of the problem.

• A preliminary experimental study.

Example of drawings

Arrows placed by
a common editor

Arrows placed by
our exact method

Related Works

• User studies on the readability of directed-edge representations

₋ [Holten and van Wijk, 2009] [Holten et al., 2011].

• Map labeling problems and in particularly edge labeling problems

₋ [Kakoulis and Tollis, 2001, 2003, 2006, 2013], [Gemsa et al.,
2013], [Gemsa et al., 2014], [van Kreveld et al., 1999], [Marks
and Shieber, 1991], [Strijk and van Kreveld, 2002], [Strijk and
Wolff, 2001], [Wagner et al., 2001]…….

• Research on this topic started at Dagstuhl with the valuable
contribution of Michael Kaufmann and Dorothea Wagner

‐ [Dagstuhl seminar 15052, 2015].

….In what follows….

 Problem formulation &
 NP-hardness

 Algorithms

 Experiments

Modeling arrow heads

v
‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

Modeling arrow heads

‐ Each vertex v is drawn as a circle
(possibly a point).

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

v

Consider a straight-line drawing Γ of a digraph G = (V, E):

e

Modeling arrow heads

v
‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

e

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

Modeling arrow heads

v

e

‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

Modeling arrow heads

v

‐ When Γ is displayed, the arrow of
e is drawn as a triangle inscribed
in the circle.

‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

e

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

Modeling arrow heads

v
‐ Each vertex v is drawn as a circle
(possibly a point).

Consider a straight-line drawing Γ of a digraph G = (V, E):

e

‐ When Γ is displayed, the arrow of
e is drawn as a triangle inscribed
in the circle.

‐ We model an arrow of an edge e
as a circle of radius rE centered in
a point along e

Overlap between objects

Three types of overlap:

• arrow – arrow

• arrow – vertex

• arrow – edge

arrow – arrow

arrow – vertex

arrow – edge e
g

A valid position

A position of an arrow of an edge e is a valid position if it does not
overlap: (P1) any vertex v; (P2) any edge g ≠ e.

arrow – arrow

arrow – vertex

arrow – edge e
g

(P1)

(P2)

A valid placement

A position of an arrow of an edge e is a valid position if it does not
overlap: (P1) any vertex v; (P2) any edge g ≠ e.

An assignment of a valid position to each arrow is called a
valid placement of the arrows.

arrow – arrow

arrow – vertex

arrow – edge e
g

(P1)

(P2)

Overlap number

Given a valid placement, the overlap number is the number of pairs
of overlapping arrows.

arrow – arrow

e
g

Arrow Placement problem

Given a straight-line drawing Γ of a digraph G = (V, E), and two
constants rV and rE compute a valid placement of the arrows (if one
exists) such that the overlap number is minimum

Assume that all circles representing a vertex and an arrow have a
common radius rV and rE, respectively.

NP-hardness

Theorem. The Arrow-Placement problem is NP-hard.

The proof uses a reduction from Planar 3-SAT; the technique is
similar to those used in the context of edge and map labeling
[Kakoulis and Tollis, 2001], [Wolff,2000], [Strijk and Wolff, 2001].

Discrete-Arrow-Placement problem

• Arrow-Placement remains NP-hard even if we fix a finite set of valid
positions for each arrow.

• We call this variant Discrete-Arrow-Placement problem.

• Our algorithms are designed for this variant of the Arrow-Placement
problem.

….In what follows….

 Problem formulation &
 NP-hardness

 Algorithms

 Experiments

Algorithms – basic idea

rV , rE

Γ

• Our algorithms are based on an arrow conflict graph CA.

valid positions

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms – basic idea

rV , rE CA

Γ

valid positions = nodes of CA

• Our algorithms are based on an arrow conflict graph CA.

pair of conflicting positions = edge in CA

Algorithms

In general, we compute a valid placement with minimum number
of overlaps.

• Our exact algorithm uses an ILP formulation.

• Our heuristic adopts a greedy strategy.

‐ Both techniques try to minimize the distance of each arrow from its
target vertex as a secondary objective.

ILP formulation - variables

• A binary variable for each valid position pe

• A binary variable for each edge (pe, pg) of CA

• The total number of variables is O(|A|2)

epx

ge ppy

epx

ge ppy

ILP formulation

1
 ee

e

Ap

px

1
gege pppp yxx)(),(Age CEpp

Ee

distance of pe
from the target

Ee Ap

pe

CEpp

pp

ee

e

Age

ge
xpd

M
y)(

1
min

)(),(

Heuristic

Our heuristic follows a greedy strategy, based on CA.

• We associate a cost c(pe) with each position pe, and then execute
|E| iterations.

• In each iteration:

‐ select a position pe of minimum cost and place the arrow of the
corresponding edge there;

‐ remove all positions of edge e from CA and update the costs of
the remaining positions.

Number of positions

conflicting with pe

epeee Tpd
M

ppc)(
1

)()(

Heuristic – cost function

Number of already chosen

positions that conflict with pe Distance of pe

from the target.

Number of positions

conflicting with pe

epeee Tpd
M

ppc)(
1

)()(

Heuristic – cost function

Distance of pe

from the target.

• Positions with minimum number of conflicts and closer to the target
vertex, are preferred.

• Positions conflicting with already placed arrows are chosen only if
necessary.

Number of already chosen

positions that conflict with pe

Heuristic - two variants

• Constructing CA may be time-consuming in practice. We also
considered a simplified version of CA.

 HEURGLOBAL is the heuristic that considers full CA.

 HEURLOCAL is the variant based on the simplified version of CA.

full CA simplified CA

….In what follows….

 Problem formulation &
 NP-hardness

 Algorithms

 Experiments

Experimental settings - Test suite

- 30 instances each;
- 6 graphs for each
number of vertices
n ∈{100,200,...,500}.

• PLANAR: biconnected planar digraphs
with edge density 1.5–2.5

• RANDOM: digraphs with edge density
1.4–1.6 (generated with uniform
probability distribution).

• NORTH: a set of 1,275 real-world digraphs with 10–100 vertices
and average density 1.4.

• Drawing algorithm: OGDF’s FM3 algorithm
[Hachul and Jūnger,2004].

Invalid positions

• If an edge has no valid positions we enforce it to have a unique
(invalid) position for the arrow, the position closest to its target
vertex.

• In the final placement there might be some crossings between an
arrow and a vertex or an edge.

Measures

• Running time.

• Placement time (the time spent to find a placement after CA has
 been computed).

• Overlap number.

• Number of crossings (due to invalid positions).

We compared our algorithms also with a trivial algorithm EDITOR
which simply places each arrow close to its target vertex.

Major findings

• The algorithms are efficient in practice (less than one second);
 the optimum (OPT) is the slowest.

• The placement time of HEURGLOBAL and HEURLOCAL are similar.
1/3 of the overall running time is taken from the construction of CA.
The construction of the simplified version of CA is negligible.

• HEURGLOBAL almost coincides with the optimum in terms of overlaps.
HEURLOCAL also gives very good solutions.

• Our algorithms reduce the number of invalid positions and produce
significantly less crossings than EDITOR.

PLANAR – Running Time

RANDOM – Running Time

NORTH – Running Time

PLANAR – Overlap number

PLANAR – Crossings & invalid positions

Scalability of our techniques

• We extended both Planar and Random sets with 30 larger instances
each (6 graphs for each number of vertices n ∈ {600,700,...,1000}).

• The behavior of our algorithms is similar to that reported for
smaller instances:

‐ The algorithms are still fast (less than two second).

‐ HEURGLOBAL almost coincides with the optimum in terms of overlaps.

‐ Our algorithms still generate significatively less crossings than EDITOR.

‐ Constructing CA remains the most expensive step.

Future work

• Speed-up our techniques for constructing CA using a sweepline or
the labeling techniques in [Wagner et al., 2001].

• Validate the effectiveness of our approach through a user study
(e.g. for tasks that involve path recognition).

• Consider both placing labels and arrow heads.

• Investigate the non-discretized problem variant, both from a
practical and theoretical point of view.

