24th Intenational Symposium on

Graph Drawing & Network Vlsuallz

19-21 September 2016, Athens, Greece

Placing Arrows in
Directed Graph Drawings

_“
Carla Binucci!, Markus Chimani?,

Walter Didimo?, Giuseppe Liotta?,
Fabrizio Montecchiani?l

L University of Perugia “Osnabrlick University

Some preliminary considerations
—

* Directed graphs are used in many application domain.

e Usually a directed edge is represented as a line with
an arrow head at its target.

* This is the prevailing model in software systems.

The Problem

This simple model becomes problematic when several
edges attach to a vertex on a similar trajectory

The Problem

This simple model becomes problematic when several
edges attach to a vertex on a similar trajectory

Our goals
—

Computing a placement of the arrow heads such that:

(a) They do not overlap other edges or arrow heads.

(b) They are as close as possible to the target vertices of
the edges.

Our Contribution
R S

* Problem formulation & NP-hardness.

* Exact and heuristic algorithms for a discretized
version of the problem.

* A preliminary experimental study.

Example of drawings

A =y

o\. "\.

Arrows placed by Arrows placed by
a common editor our exact method

Larger examples
—

100 vertices
250 edges

Arrows placed by
a common editor

Larger examples

100 vertices
250 edges

Arrows placed by
our exact method

Related Works

—

» User studies on the readability of directed-edge representations

_ [Holten and van Wijk, 2009] [Holten et al., 2011].

* Map labeling problems and in particularly edge labeling problems

_ [Kakoulis and Tollis, 2001, 2003, 2006, 2013], [Gemsa et al.,
2013], [Gemsa et al., 2014], [van Kreveld et al., 1999], [Marks

and Shieber, 1991], [Strijk and van Kreveld, 2002], [Strijk and
Wolff, 2001], [Wagner et al., 2001]

* Research on this topic started at Dagstuhl with the valuable
contribution of Michael Kaufmann and Dorothea Wagner

- [Dagstuhl seminar 15052, 2015].

....In what follows....
R S

> Problem formulation &
NP-hardness

» Algorithms

» Experiments

Modeling arrow heads
s D

Consider a straight-line drawing I of a digraph G = (V, E):

- Each vertex v is drawn as a circle
(possibly a point).

<

Modeling arrow heads
s D

Consider a straight-line drawing I of a digraph G = (V, E):

<

- Each vertex v is drawn as a circle
(possibly a point).

- We model an arrow of an edge e
as a circle of radius r; centered in
a point along e

Modeling arrow heads
s D

Consider a straight-line drawing I of a digraph G = (V, E):

<

- Each vertex v is drawn as a circle
(possibly a point).

- We model an arrow of an edge e
as a circle of radius r; centered in
a point along e

Modeling arrow heads
s D

Consider a straight-line drawing I of a digraph G = (V, E):

V

)
7’
-
-
//
- /’
-
-
7’

- Each vertex v is drawn as a circle
(possibly a point).

- We model an arrow of an edge e
as a circle of radius r; centered in
a point along e

Modeling arrow heads
s D

Consider a straight-line drawing I of a digraph G = (V, E):

- Each vertex v is drawn as a circle

v (possibly a point).

®

- We model an arrow of an edge e
as a circle of radius r; centered in
a point along e

- When T is displayed, the arrow of
e is drawn as a triangle inscribed
in the circle.

Modeling arrow heads
s D

Consider a straight-line drawing I of a digraph G = (V, E):

- Each vertex v is drawn as a circle

v (possibly a point).

+®

- We model an arrow of an edge e
as a circle of radius r; centered in
a point along e

- When T is displayed, the arrow of
e is drawn as a triangle inscribed
in the circle.

Overlap between objects
e D

Three types of overlap:
® arrow — arrow
e arrow — vertex

* arrow — edge
arrow — vertex

o ¢
arrow — arrow %O

e

® ¢g /Y

arrow — edge

A valid position
>

A position of an arrow of an edge e is a valid position if it does not
overlap: (P1) any vertex v; (P2) any edge g # e.

arrow — vertex @(Pl)
®

arrow — arrow %O

€ arrow — edge @ (P2)

® ¢g /Y

A valid placement
>

A position of an arrow of an edge e is a valid position if it does not
overlap: (P1) any vertex v; (P2) any edge g # e.

An assignment of a valid position to each arrow is called a
valid placement of the arrows.

arrow — vertex @(Pl)
®

arrow — arrow %O

€ arrow — edge @(PZ)
® ¢g /Y

Overlap number
—

Given a valid placement, the overlap number is the number of pairs
of overlapping arrows.

arrow — arrow %

e

® ¢g /Y

Arrow Placement problem
—

Assume that all circles representing a vertex and an arrow have a
common radius r, and r,, respectively.

Given a straight-line drawing I of a digraph G = (V, E), and two
constants r, and r. compute a valid placement of the arrows (if one
exists) such that the overlap number is minimum

NP-hardness
>

Theorem. The Arrow-Placement problem is NP-hard.

The proof uses a reduction from Planar 3-SAT; the technique is
similar to those used in the context of edge and map labeling
[Kakoulis and Tollis, 2001], [Wolff,2000], [Strijk and Wolff, 2001].

Discrete-Arrow-Placement problem
>

* Arrow-Placement remains NP-hard even if we fix a finite set of valid
positions for each arrow.

* We call this variant Discrete-Arrow-Placement problem.

e Qur algorithms are designed for this variant of the Arrow-Placement
problem.

....In what follows....
R S

» Problem formulation &
NP-hardness

» Algorithms

» Experiments

Algorithms — basic idea
e D

* Our algorithms are based on an arrow conflict graph C,.

r,, e

valid positions

Algorithms — basic idea
e D

* Our algorithms are based on an arrow conflict graph C,.

DS ¢ %
® 4 %
o ‘.
® ®
® @
: Q. 0.
.. o
® . ¥
. o ...
[°® o®

valid positions = nodes of C,

Algorithms — basic idea

* Our algorithms are based on an arrow conflict graph C,.

pair of conflicting positions = edge in C,

valid positions = nodes of C,

Algorithms — basic idea

* Our algorithms are based on an arrow conflict graph C,.

pair of conflicting positions = edge in C,

valid positions = nodes of C,

Algorithms — basic idea

* Our algorithms are based on an arrow conflict graph C,.

pair of conflicting positions = edge in C,

valid positions = nodes of C,

Algorithms — basic idea

* Our algorithms are based on an arrow conflict graph C,.

pair of conflicting positions = edge in C,

valid positions = nodes of C,

Algorithms — basic idea

* Our algorithms are based on an arrow conflict graph C,.

pair of conflicting positions = edge in C,

r,, e

valid positions = nodes of C,

Algorithms — basic idea

* Our algorithms are based on an arrow conflict graph C,.

pair of conflicting positions = edge in C,

o '...:) .0%0
ry, e j‘> ::\ .; ‘0."
o AR G
@ . .o o®®

/gu.,‘o o®

valid positions = nodes of C,

Algorithms — basic idea

> .~. select a valid
h. position for

7 ° ® each arrow

e A

. 4 >

® .

o _eo°°

© N

A valid placement
with overlap number
equal to zero

.-'.'.'._..—. ! /)

.
@®.
9- ®
9. ®
LY
“_ f
.
.rh“' .
-
!
it |
™=
‘ [
"
i

Algorithms
>

In general, we compute a valid placement with minimum number
of overlaps.

* Our exact algorithm uses an ILP formulation.

* Our heuristic adopts a greedy strategy.

- Both technigues try to minimize the distance of each arrow from its
target vertex as a secondary objective.

ILP formulation - variables

—

* A binary variable Xp for each valid position p,

e

* A binary variable ypepg for each edge (p,, p,) of C,

Y. P

* The total number of variables is O(|A|?)

ILP formulation
o

distance of p,

from the target
[min S Vo +— 3 Zd(pe)xpeJ

(Pe. pg)EE(CA) eck p.eA,

> x, =1 Ve e E
PechAe

{ Xpo T Xp, = Yoo, +1 } V(P P,) € E(C,)

Heuristic
—

Our heuristic follows a greedy strategy, based on C,.

* We associate a cost c(p,) with each position p,, and then execute
| E| iterations.

* In each iteration:
- select a position p, of minimum cost and place the arrow of the
corresponding edge there;

- remove all positions of edge e from C, and update the costs of
the remaining positions.

Heuristic — cost function
5S>

c(p,) = 8(p) + - d(p) + T -0,

Number of positions Number of already chosen
conflicting with p, Distance of p, positions that conflict with p,

from the target.

Heuristic — cost function
5S>

e(p,) = 5(p,) + ﬁ d(p)+T o,

Number of positions Number of already chosen
conflicting with p, Distance of p, positions that conflict with p,

from the target.

* Positions with minimum number of conflicts and closer to the target
vertex, are preferred.

* Positions conflicting with already placed arrows are chosen only if
necessary.

Heuristic - two variants

—

* Constructing C, may be time-consuming in practice. We also
considered a simplified version of C,.

:o. ?0.}4 ...: .:.‘o‘%

simplified C,
» HEURGLOBAL is the heuristic that considers full C,.

» HEURLOCAL is the variant based on the simplified version of C,.

....In what follows....
R S

» Problem formulation &
NP-hardness

» Algorithms

» Experiments

Experimental settings - Test suite
>

* PLANAR: biconnected planar digraphs
with edge density 1.5-2.5 - 30 instances each;

_ . _ - 6 graphs for each
* RANDOM: digraphs with edge density number of vertices

1.4-1.6 (generated with uniform n €{100,200,...,500}.
probability distribution).

-

* NORTH: a set of 1,275 real-world digraphs with 10—100 vertices
and average density 1.4.

* Drawing algorithm: OGDF’s FM3 algorithm
[Hachul and Janger,2004].

Invalid positions
—

* If an edge has no valid positions we enforce it to have a unique
(invalid) position for the arrow, the position closest to its target
vertex.

* In the final placement there might be some crossings between an
arrow and a vertex or an edge.

Measures
—

* Running time.

* Placement time (the time spent to find a placement after C, has
been computed).

* Overlap number.

* Number of crossings (due to invalid positions).

We compared our algorithms also with a trivial algorithm EDITOR
which simply places each arrow close to its target vertex.

Major findings
>

* The algorithms are efficient in practice (less than one second);
the optimum (OPT) is the slowest.

* The placement time of HEURGLOBAL and HEURLOCAL are similar.
1/3 of the overall running time is taken from the construction of C,.
The construction of the simplified version of C, is negligible.

* HEURGLOBAL almost coincides with the optimum in terms of overlaps.
HEURLOCAL also gives very good solutions.

e Qur algorithms reduce the number of invalid positions and produce
significantly less crossings than EDITOR.

PLANAR — Running Time
—

700
600
500

w» 400

€ 300
200

100 9///‘@

100 200 300 400 500
vertices

-@0-0OPT -@-HEURGLOBAL -©-HEURLOCAL

RANDOM — Running Time
—

250
200
_ 150
€ 100 ——
@
0 & = g . ©
100 200 300 400 500

vertices

-0-0PT -@-HEURGLOBAL -=-HEURLOCAL

NORTH — Running Time
>

100

80 4—,,.——-.
. 60 e—e—&—98— o
£ 40
20 _® o- o——©
0 8 = S S S S S S

vertices

-0-Opt -®-HeurGlobal ==-Heurlocal

PLANAR — Overlap number
—

Gap with the optimum (%)
100%

0% / —
60%
40% /\@/@
20%

0% ® - @ o -0
100 200 300 400 500
vertices

~®-HEURGLOBAL -=-HEURLOCAL -—EDITOR

PLANAR — Crossings & invalid positions
—

2000
1500 =@ OUR ALGORITHMS -
CROSSINGS
1000 EDITOR - CROSSINGS
500 _ @ —— OUR ALGORITHMS -
0= _@ ~ -9~ . INVALID POSITIONS
0 EDITOR - INVALID
100 200 300 400 500 POSITIONS

vertices

Scalability of our techniques
s D

* We extended both Planar and Random sets with 30 larger instances
each (6 graphs for each number of vertices n € {600,700,...,1000}).

* The behavior of our algorithms is similar to that reported for
smaller instances:

- The algorithms are still fast (less than two second).
- HEURGLOBAL almost coincides with the optimum in terms of overlaps.
- Our algorithms still generate significatively less crossings than EDITOR.

- Constructing C, remains the most expensive step.

Future work
5S>

* Speed-up our techniques for constructing C, using a sweepline or
the labeling techniques in [Wagner et al., 2001].

* Validate the effectiveness of our approach through a user study
(e.g. for tasks that involve path recognition).

* Consider both placing labels and arrow heads.

* Investigate the non-discretized problem variant, both from a
practical and theoretical point of view.

