
Placing Arrows in  
Directed Graph Drawings 

Carla Binucci1, Markus Chimani2, 
Walter Didimo1, Giuseppe Liotta1, 

Fabrizio Montecchiani1 

1 University of Perugia    2Osnabrück University 



Some preliminary considerations 

• Directed graphs are used in many application domain. 
 
 
• Usually a directed edge is represented as a line with 
an arrow head at its target. 
 
 
• This is the prevailing model in software systems. 



The Problem 

This simple model becomes problematic when several 
edges attach to a vertex on a similar trajectory 
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Our goals 

Computing  a placement of the arrow heads such that: 
 
(a) They do not overlap other edges or arrow heads. 
 
  
(b) They are as close as possible to the target vertices of 

the edges. 



Our Contribution 

• Problem formulation & NP-hardness. 

• Exact and heuristic algorithms for a discretized 
version of the problem. 

• A preliminary experimental study. 



Example of drawings 

Arrows  placed by  
a common editor 

Arrows  placed by  
our exact method 







Related Works 

• User studies on the readability of directed-edge representations 

₋ [Holten and van Wijk, 2009] [Holten et al., 2011]. 
 

• Map labeling problems and in particularly edge labeling problems 

₋ [Kakoulis and Tollis, 2001, 2003, 2006, 2013], [Gemsa et al., 
2013], [Gemsa et al., 2014], [van Kreveld et al., 1999], [Marks 
and Shieber, 1991], [Strijk and van Kreveld, 2002], [Strijk and 
Wolff, 2001], [Wagner et al., 2001]……. 

• Research on this topic started at Dagstuhl with the valuable 
contribution of Michael Kaufmann and Dorothea Wagner  

‐ [Dagstuhl seminar 15052, 2015]. 



….In what follows…. 

 Problem formulation &     
    NP-hardness 
 
 Algorithms 
 
 Experiments 



Modeling arrow heads 

v 
‐ Each vertex v is drawn as a circle 
(possibly a point). 

Consider a straight-line drawing Γ  of a digraph G = (V, E):  
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Overlap between objects 

Three types of overlap:  

• arrow – arrow  

• arrow – vertex 

• arrow – edge  
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A valid position 

A position of an arrow of an edge e is a valid position if it does not 
overlap: (P1) any vertex v; (P2) any edge g ≠ e. 

arrow – arrow 

arrow – vertex 

arrow – edge e 
g 

(P1) 

(P2) 



A valid placement 

A position of an arrow of an edge e is a valid position if it does not 
overlap: (P1) any vertex v; (P2) any edge g ≠ e. 

An assignment of a valid position to each arrow is called a  
valid placement of the arrows. 

arrow – arrow 

arrow – vertex 

arrow – edge e 
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(P2) 



Overlap number 

Given a valid placement, the overlap number is the number of pairs 
of overlapping arrows. 

arrow – arrow 

e 
g 



Arrow Placement problem 

Given a straight-line drawing Γ of a digraph G = (V, E), and two 
constants rV and rE compute a valid placement of the arrows (if one 
exists) such that the overlap number is minimum 

Assume that all circles representing a vertex  and an arrow have a 
common radius rV  and rE, respectively.  



NP-hardness 

Theorem. The Arrow-Placement problem is NP-hard. 

The proof uses a reduction from Planar 3-SAT; the technique is 
similar to those used in the context of edge and map labeling 
[Kakoulis and Tollis, 2001], [Wolff,2000], [Strijk and Wolff, 2001].  



Discrete-Arrow-Placement problem 

• Arrow-Placement remains NP-hard even if we fix a finite set of valid 
positions for each arrow. 
 
 
• We call this variant Discrete-Arrow-Placement problem. 
 
 
• Our algorithms are designed for this variant of the  Arrow-Placement 
problem. 
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Algorithms – basic idea 

rV , rE 

Γ 

• Our algorithms are based on an arrow conflict graph CA. 

valid positions 
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Algorithms 

In general, we compute a valid placement  with minimum number 
of overlaps. 
 

• Our  exact algorithm uses an ILP formulation. 

• Our  heuristic adopts a greedy strategy.  

‐ Both techniques try to minimize the distance of each arrow from its 
target vertex as a secondary objective.  



ILP formulation - variables 

• A binary variable   for each valid position pe 

•  A binary variable        for each edge (pe, pg) of CA 

  

• The total number of variables is O(|A|2) 

epx
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Heuristic 

Our heuristic follows a greedy strategy, based on CA.  
 
• We associate a cost c(pe) with each position pe, and then execute 
|E| iterations. 
 
• In each iteration:  

‐  select a position pe of minimum cost and place the arrow of the 
corresponding edge there;   

‐  remove all positions of edge e from CA and update the costs of 
the remaining positions.  
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Heuristic – cost function 

Distance of pe 

from the target. 

• Positions with minimum number of conflicts and closer to the target 
vertex, are preferred. 

• Positions conflicting with already placed arrows are chosen only if 
necessary. 

Number of already chosen 

positions that conflict with pe 



Heuristic - two variants 

• Constructing CA may be time-consuming in practice. We also 
considered a simplified version of CA. 

 HEURGLOBAL is the heuristic that considers full CA. 

 HEURLOCAL is the variant based on the simplified version of CA. 

full CA simplified CA 
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Experimental settings - Test suite 

- 30 instances each;  
- 6 graphs for each  
number of vertices  
n ∈{100,200,...,500}.  

• PLANAR: biconnected planar digraphs 
with edge density 1.5–2.5 

• RANDOM: digraphs with edge density  
1.4–1.6 (generated with uniform 
probability distribution). 

• NORTH: a set of 1,275 real-world digraphs with 10–100 vertices 
and average density 1.4.  

• Drawing algorithm: OGDF’s FM3 algorithm  
[Hachul and Jūnger,2004]. 



Invalid positions 

• If an edge has no valid positions we enforce it to have a unique 
(invalid) position for the arrow, the position closest to its target 
vertex.  

 

• In the final placement there might be some crossings between an 
arrow and a vertex or an edge. 



Measures 

• Running time.  

• Placement time (the time spent to find a placement after CA has  
         been computed). 

• Overlap number. 

• Number of crossings (due to invalid positions).  

We compared our algorithms also with a trivial algorithm EDITOR 
which simply places each arrow close to its target vertex. 



Major findings 

• The algorithms are efficient in practice (less than one second);  
 the optimum (OPT) is the slowest. 

• The placement time of HEURGLOBAL and HEURLOCAL are similar.  
1/3 of the overall running  time is taken from the construction of CA. 
The construction of the simplified version of CA is negligible. 

• HEURGLOBAL almost coincides with the optimum in terms of overlaps. 
HEURLOCAL also gives very good solutions. 

• Our algorithms reduce the number of invalid positions and produce 
significantly less crossings than EDITOR.  



PLANAR – Running Time 



RANDOM – Running Time 



NORTH – Running Time 



PLANAR – Overlap number 



PLANAR – Crossings & invalid positions 



Scalability of our techniques 

• We extended both Planar and Random sets with 30 larger instances 
each (6 graphs for each number of vertices n ∈ {600,700,...,1000}).  

• The behavior of our algorithms is similar to that reported for 
smaller instances: 

‐ The algorithms are still fast (less than two second). 

‐ HEURGLOBAL almost coincides with the optimum in terms of overlaps. 

‐ Our algorithms still generate significatively less crossings than EDITOR. 

‐ Constructing CA remains the most expensive step. 



Future work 

• Speed-up our techniques for constructing CA using a sweepline or 
the labeling techniques in [Wagner et al., 2001]. 

• Validate the effectiveness of our approach through a user study 
(e.g. for tasks that involve path recognition).  

• Consider both placing labels and arrow heads.  

• Investigate the non-discretized problem variant, both from a 
practical and theoretical point of view. 




