# 1-bend Upward Planar Drawings of SP-digraphs with the Optimal Number of Slopes

Emilio Di Giacomo, Giuseppe Liotta, <u>Fabrizio Montecchiani</u>

Università degli Studi di Perugia, Italy

GD 2016, September 19-21, Athens









• with few bends and few edge slopes



*k-bend planar slope number* (*k-bpsn*) of a graph G: minimum number of slopes needed to compute a planar polyline drawing of G with at most k bends per edge.

$$k$$
-bpsn $(G) \ge \left\lceil \frac{\Delta}{2} \right\rceil$ 

where  $\Delta$  is the maximum vertex degree of G

• The 2-bpsn of planar graphs is  $\left\lceil \frac{\Delta}{2} \right\rceil$  [Keszech et al., 2010]

- The 2-bpsn of planar graphs is  $\left\lceil \frac{\Delta}{2} \right\rceil$  [Keszech et al., 2010]
- The 1-bpsn of planar graphs is at most  $1.5\Delta$  [Knauer & Walczak, 2015] and at least  $0.75(\Delta-1)$  [Ksezech et al., 2010]
- The 1-bpsn of outerplanar graphs is  $\left\lceil \frac{\Delta}{2} \right\rceil$ [Knauer & Walczack, 2015]

- The 2-bpsn of planar graphs is  $\left\lceil \frac{\Delta}{2} \right\rceil$  [Keszech et al., 2010]
- The 1-bpsn of planar graphs is at most  $1.5\Delta$  [Knauer & Walczak, 2015] and at least  $0.75(\Delta 1)$  [Ksezech et al., 2010]
- The 1-bpsn of outerplanar graphs is  $\left\lceil \frac{\Delta}{2} \right\rceil$ [Knauer & Walczack, 2015]
- The psn of planar graphs is at most  $O(c^{\Delta})$  and at least  $3\Delta-6$  [Keszech et al., 2010]

### Our contribution

The 1-bend upward planar slope number (1-bupsn) of a graph G is the minimum number of slopes needed to compute a 1-bend upward planar drawing of G

**Observation:** 1-bupsn(G)  $\geq 1$ -bpsn(G)



### Our contribution

We show that the **1-bupsn** of any **series-parallel digraph** with maximum vertex degree  $\Delta$  is at most  $\Delta$ , and this bound is worst-case optimal

### Our contribution

We show that the **1-bupsn** of any **series-parallel digraph** with maximum vertex degree  $\Delta$  is at most  $\Delta$ , and this bound is worst-case optimal

This result improves the general upper bound  $1.5\Delta$  of the 1-bpsn of planar graphs in the case of series-parallel graphs [Knauer & Walczak, 2015]

Our drawings can be computed in linear time and have angular resolution at least  $\frac{\pi}{\Delta}$  (worst-case optimal)

# Preliminary definitions

A series-parallel digraph (SP-digraph for short) is a simple planar digraph that has one *source* and one *sink*, called *poles*, and it is recursively defined as follows.

A single edge is an SP-digraph.



A series-parallel digraph (SP-digraph for short) is a simple planar digraph that has one *source* and one *sink*, called *poles*, and it is recursively defined as follows.

The digraph obtained by identifying the sources and the sinks of two SP-digraphs is an SP-digraph.



PARALLEL composition

A series-parallel digraph (SP-digraph for short) is a simple planar digraph that has one *source* and one *sink*, called *poles*, and it is recursively defined as follows.

The digraph obtained by identifying the sink of a SP-digraph with the source of another SP- digraph is an SP-digraph.



SERIES composition



### The Slope Set $\mathcal{S}_{\Delta}$

$$s_i = \frac{\pi}{2} + i \frac{\pi}{\Delta}$$
 for  $i = 0, \dots, \Delta - 1$ 





**Input:** an SP-digraph G

**Output:** a 1-bend upward planar drawing  $\Gamma$  of G with at most  $\Delta$  slopes of the slope-set  $S_{\Delta}$ 



**Input:** an SP-digraph G

**Output:** a 1-bend upward planar drawing  $\Gamma$  of G with at most  $\Delta$  slopes of the slope-set  $S_{\Delta}$ 

• right push transitive edges



Input: an SP-digraph  ${\cal G}$ 

**Output:** a 1-bend upward planar drawing  $\Gamma$  of G with at most  $\Delta$  slopes of the slope-set  $S_{\Delta}$ 

• right push + subdivide transitive edges



Input: an SP-digraph  ${\cal G}$ 

**Output:** a 1-bend upward planar drawing  $\Gamma$  of G with at most  $\Delta$  slopes of the slope-set  $S_{\Delta}$ 

- right push + subdivide transitive edges
- Construct a cross-contact representation  $\gamma$  of G



Input: an SP-digraph  ${\cal G}$ 

**Output:** a 1-bend upward planar drawing  $\Gamma$  of G with at most  $\Delta$  slopes of the slope-set  $S_{\Delta}$ 

- right push + subdivide transitive edges
- Construct a cross-contact representation  $\gamma$  of G
- $\bullet$  Transform  $\Gamma$  into the desired representation
- Remove subdivsion vertices



Upward Cross-Contact Representations

cross = a horizontal segment and a
vertical segment sharing an inner point

*degenerate cross* = a horizontal/vertical segment

cross = a horizontal segment and a
vertical segment sharing an inner point

*degenerate cross* = a horizontal/vertical segment

cross-contact representation (CCR)  $\gamma$  of a graph G:

- Vertices = (Degenerate) Crosses
- Edges  $\iff$  Contacts



*center* of a cross = the point shared by its horizontal and vertical segment, or its midpoint if degenerate

upward CCR (UCCR) of a digraph G



**balanced** UCCR = for every cross, we have the same number of contacts to the left and to the right of its center, except for at most one



Upward Cross-Contact Representations (UCCR) well-spaced UCCR = no two safe-regions intersect



# Sketch of the Algorithm

### Drawing Algorithm

**Input:** an SP-digraph G with no transitive edges (subdivided before) and its decomposition tree T**Output:** a balanced and well-spaced UCCR  $\gamma$  of G

The algorithm computes  $\gamma$  through a bottom-up visit of T. For each node  $\mu$  of T computes an UCCT  $\gamma_{\mu}$  of the graph  $G_{\mu}$  associated with  $\mu$  s.t. the following properties hold:

**P1.**  $\gamma_{\mu}$  is balanced **P2.**  $\gamma_{\mu}$  is well-spaced **P3.** if  $\mu$  is an S-/P-node, than  $\gamma_{\mu}$  fits in a rectangle  $R_{\mu}$  with the two poles as opposite sides



Q-/S-/P-nodes



# $\mathsf{UCCR} \to 1\text{-bend}\ \mathsf{drawing}$ $\star - c(v)$

each cross is balanced so we have enough slopes...

### UCCR $\rightarrow$ 1-bend drawing

..... ..... Ξ..... ..... c(v)ē......

safe-regions do not intersect, so we do not introduce crossings...

### UCCR $\rightarrow$ 1-bend drawing

the vertical slope is always part of our set of slopes...



### Removing subdivision vertices



### Lower bound

if the source (sink) has out-degree (in-degree)  $\Delta$ , then  $\Delta - 1$  slopes are necessary for an upward drawing

To achieve this bound, the horizontal slope must be used twice



### **Open Problems**

Is  $\Delta$  a tight bound for the 1-bpsn of SP-graphs?

Can we extend this bound to all partial 2-trees?

What about upward planar graphs?

### **Open Problems**

Is  $\Delta$  a tight bound for the 1-bpsn of SP-graphs?

Can we extend this bound to all partial 2-trees?

What about upward planar graphs?

THANK YOU