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Visibility Representations (VR)

G

Γ

A Visibility Representation (VR) of a graph G maps
• the vertices of G to non-overlapping geometric objects
• the edges of G to segments that do not intersect any

geometric object other than at their end-points
(visibilities)
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Bar Visibility Representations (BVR)

G

In a Bar Visibility Representation (BVR)
• vertices → horizontal segments (bars)
• edges → vertical segments

a

b c

d

Γ
a

b

c

d

Every planar graph admits a (weak) BVR
Graphs that admit a (strong) BVR have been characterized
Duchet et al. 1983, Rosenstiehl & Tarjan 1986,

Tamassia & Tollis 1991, Wismath 1985



Rectangle Visibility Representations (RVR)

G

In a Rectangle Visibility Representation (RVR)
• vertices → axis-aligned rectangles
• edges → horizontal or vertical segments
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At most 6n− 20 edges Hutchinson et al. 1999

Recognition is NP-hard in general Shermer 1996

and polynomial time solvable in some restricted cases
Biedl et al. 2016, Streinu & Whitesides 2003



Box Visibility Representations (BR)

In a Box Visibility Representation (BR)
• vertices → axis-aligned 3D boxes
• edges → segments parallel to the x-, y-, and z-axis

K56 admits a BR, while K184 does not
Fekete & Meijer 1999
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2.5D Box Visibility Representation (2.5D-BR)

2.5D Box Visibility Representations (2.5D-BR):
• vertices → axis-aligned 3D boxes whose bottom faces lie

in the plane z = 0
• edges → segments parallel to the x- and y-axis

K9



Our results 1/2

• Every complete bipartite graph admits a 2.5D-BR
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Our results 1/2

• Every complete bipartite graph admits a 2.5D-BR

• The complete graph Kn admits a 2.5D-BR if and only if
n ≤ 19.

• Every graph with pathwidth at most 7 admits a
2.5D-BR, which can be computed in linear time



2.5D Grid Box Representations (2.5D-GBR)

2.5D Grid Box Visibility Representations (2.5D-GBR)
2.5D-BR such that the bottom face of each box is a unit
square with corners at integer coordinates



Our results 2/2

• An n-vertex graph that admits a 2.5D-GBR has at most
4n− 6

√
n edges and that this bound is tight.



Our results 2/2

• An n-vertex graph that admits a 2.5D-GBR has at most
4n− 6

√
n edges and that this bound is tight.

• Deciding whether a given graph G admits a 2.5D-GBR
with a given footprint is NP-complete
– The footprint of a 2.5D-BR Γ is the set of bottom

faces of the boxes in Γ.



2.5D-BR of Kn



2.5D-BR of Kn

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR Γ of Kn, we show that:
• There is one line `h parallel to the x-axis and one line `v

parallel to the y-axis whose union intersect the
footprints of all boxes

• `h and `v intersect at most 10 boxes each
⇒ there can be at most 20 boxes in Γ

• There is a box that is intersected by both `h and `v
⇒ there can be at most 19 boxes in Γ
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Let Γ be a 2.5D-BR of Kn



Two observations

• We can assume that every box in Γ has a distinct integer
height in the range [1, n]

Let Γ be a 2.5D-BR of Kn



Two observations

• For any pair of rectangles in the footprint of Γ there
exists a line that intersects both rectangles and that is
parallel to the x- or to the y-axis

• We can assume that every box in Γ has a distinct integer
height in the range [1, n]

Let Γ be a 2.5D-BR of Kn



2.5D-BR of Kn

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR Γ of Kn, we show that:
• There is one line `h parallel to the x-axis and one line `v

parallel to the y-axis whose union intersect the
footprints of all boxes

• `h and `v intersect at most 10 boxes each
⇒ there can be at most 20 boxes in Γ

• There is a box that is intersected by both `h and `v
⇒ there can be at most 19 boxes in Γ



2.5D-BR of Kn

• Let `h and `v be a horizontal and a vertical line whose
union intersects the maximum number of rectangles in R

• Suppose that a rectangle a ∈ R is not instersected

`v

a

Given a 2.5D-BR Γ of Kn, let R be the set of rectangles in
the footprint of Γ

`h



2.5D-BR of Kn

Move `h and `v as close as possible to a without changing
the set of instersected rectangles

`v

`h

a



2.5D-BR of Kn
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Move `h and `v as close as possible to a without changing
the set of instersected rectangles
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2.5D-BR of Kn

`v

a
c

b

Move `h and `v as close as possible to a without changing
the set of instersected rectangles

`h

• Let c be the rectangle that prevents `v to move closer to a
• Let b be the rectangle that prevents `h to move closer to a



2.5D-BR of Kn

• there must be either a horizontal or a vertical line that
intersects both b and c

`v

a
c

b

Move `h and `v as close as possible to a without changing
the set of instersected rectangles

`h

• Let c be the rectangle that prevents `v to move closer to a
• Let b be the rectangle that prevents `h to move closer to a



2.5D-BR of Kn

`v

`h

a
c

b

• Let c be the rectangle that prevents `v to move closer to a
• Let b be the rectangle that prevents `h to move closer to a

Move `h and `v as close as possible to a without changing
the set of instersected rectangles

• there must be either a horizontal or a vertical line that
intersects both b and c

`v

`h

a
c

b



2.5D-BR of Kn

• c is intersected by
both `v and `h

`v

a
c
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`v

`h

a
c

b`h

• b is intersected by
both `v and `h



2.5D-BR of Kn

`v

a
c

b

`v

`h

a
c

b`h

• c is intersected by
both `v and `h
⇒ `v can be moved
closer to a

• b is intersected by
both `v and `h
⇒ `h can be moved
closer to a



2.5D-BR of Kn

`v

a
c

b

`v

`h

a
c

b`h

• c is intersected by
both `v and `h
⇒ `v can be moved
closer to a

• b is intersected by
both `v and `h
⇒ `h can be moved
closer to a



2.5D-BR of Kn

`v

a
c

b

`v

`h

a
c

b`h

• c is intersected by
both `v and `h
⇒ `v can be moved
closer to a
A contradiction

• b is intersected by
both `v and `h
⇒ `h can be moved
closer to a
A contradiction



2.5D-BR of Kn

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR Γ of Kn, we show that:
• There is one line `h parallel to the x-axis and one line `v

parallel to the y-axis whose union intersect the
footprints of all boxes

• `h and `v intersect at most 10 boxes each
⇒ there can be at most 20 boxes in Γ

• There is a box that is intersected by both `h and `v
⇒ there can be at most 19 boxes in Γ

3



Unimaximal sequences

A sequence of distinct integers is unimaximal if no element
of the sequence is smaller than both its predecessor and
successor.

7333



Unimaximal sequences

Lemma 4 For all m > 1, in every sequence of
(
m
2

)
+ 1

distinct integers, there exists at least one unimaximal
sequence of length m. Fekete et al. 1995

In a sequence of 11 distinct integers, there is a unimaximal
sequence of length 5
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Suppose that `h (or `v) intersects 11 boxes
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The heights of these boxes form a sequence of distinct
integers

⇒ There exist five boxes whose heights form a unimaximal
sequence
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boxes see each other “above” a third one.

Suppose that `h (or `v) intersects 11 boxes

⇒ There exist five boxes whose heights form a unimaximal
sequence



Unimaximal sequences

Suppose that `h (or `v) intersects 11 boxes

Since the heights form a unimaximal sequence, no two
boxes see each other “above” a third one.

⇒ There exist five boxes whose heights form a unimaximal
sequence



Unimaximal sequences

Suppose that `h (or `v) intersects 11 boxes

⇒ Boxes must see each other at level z = 0

Since the heights form a unimaximal sequence, no two
boxes see each other “above” a third one.

⇒ There exist five boxes whose heights form a unimaximal
sequence



Unimaximal sequences

Suppose that `h (or `v) intersects 11 boxes

⇒ Boxes must see each other at level z = 0

⇒ There exist five boxes whose heights form a unimaximal
sequence
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Suppose that `h (or `v) intersects 11 boxes

⇒ Boxes must see each other at level z = 0

⇒ There exist five boxes whose heights form a unimaximal
sequence



Unimaximal sequences

⇒ The five boxes and their visibilities form a BVR

Suppose that `h (or `v) intersects 11 boxes

⇒ Boxes must see each other at level z = 0

⇒ There exist five boxes whose heights form a unimaximal
sequence



Unimaximal sequences

Suppose that `h (or `v) intersects 11 boxes

⇒ There exist five boxes whose heights form a unimaximal
sequence

⇒ The five boxes and their visibilities form a BVR
⇒ Boxes must see each other at level z = 0



Unimaximal sequences

Suppose that `h (or `v) intersects 11 boxes

⇒ There exist five boxes whose heights form a unimaximal
sequence

⇒ There is a BVR of K5 – A contradiction!
⇒ The five boxes and their visibilities form a BVR
⇒ Boxes must see each other at level z = 0



2.5D-BR of Kn

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR Γ of Kn, we show that:
• There is one line `h parallel to the x-axis and one line `v

parallel to the y-axis whose union intersect the
footprints of all boxes

• `h and `v intersect at most 10 boxes each
⇒ there can be at most 20 boxes in Γ

• There is a box that is intersected by both `h and `v
⇒ there can be at most 19 boxes in Γ

3

3



2.5D-BR of Kn

Suppose that no box is intersected by both `h and `v



2.5D-BR of Kn

`v

`h

Suppose that no box is intersected by both `h and `v



2.5D-BR of Kn

`h

L R

B

T

`v

Suppose that no box is intersected by both `h and `v



2.5D-BR of Kn

Suppose that no box is intersected by both `h and `v

Case 1. |L| 6= |R| and |B| 6= |T |
Case 2. |L| 6= |R| and |B| = |T |
Case 3. |L| = |R| and |B| = |T |



2.5D-BR of Kn

Suppose that no box is intersected by both `h and `v

Case 1. |L| 6= |R| and |B| 6= |T |
Case 2. |L| 6= |R| and |B| = |T |
Case 3. |L| = |R| and |B| = |T |



2.5D-BR of Kn

`v

`h

|L| = 5
|R| = 5

|B| = 5

|T | = 5

Case 3. |L| = |R| and |B| = |T |



2.5D-BR of Kn

`h

L′
R′

B′

T ′

`v

Case 3. |L| = |R| and |B| = |T |

l1
r1

b1

t1



2.5D-BR of Kn

Case 3. |L| = |R| and |B| = |T |

Two possible configurations for L and B



2.5D-BR of Kn

Case 3. |L| = |R| and |B| = |T |

l1

b1`L

Configuration A: at
least one box of B′ to
the right of `L

Two possible configurations for L and B
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Case 3. |L| = |R| and |B| = |T |

l1

b1`L

Configuration A: at
least one box of B′ to
the right of `L

Two possible configurations for L and B



2.5D-BR of Kn

Case 3. |L| = |R| and |B| = |T |

l1

b1`L

L′ has a
staircase
layout (SL)

Configuration A: at
least one box of B′ to
the right of `L

Two possible configurations for L and B



2.5D-BR of Kn

Case 3. |L| = |R| and |B| = |T |

l1

b1`L

l1

b1

L′ has a
staircase
layout (SL)

Configuration A: at
least one box of B′ to
the right of `L

Two possible configurations for L and B



2.5D-BR of Kn

Case 3. |L| = |R| and |B| = |T |

l1

b1`L

Configuration B: all
boxes of B′ to the left
of `L

Two possible configurations for L and B



2.5D-BR of Kn

Case 3. |L| = |R| and |B| = |T |

l1

b1`L

B′ has a staircase
layout (SL)

Configuration B: all
boxes of B′ to the left
of `L

Two possible configurations for L and B



2.5D-BR of Kn

Case 3. |L| = |R| and |B| = |T |

B′ has a staircase
layout (SL)

l1

b1`L

Configuration B: all
boxes of B′ to the left
of `L

l1

b1

Two possible configurations for L and B



2.5D-BR of Kn

Two possible configurations for B and L:
• Configuration A ⇒ L′ has a SL
• Configuration B ⇒ B′ has a SL



2.5D-BR of Kn

The same holds for L and T , for T and R, and for R and B

Two possible configurations for B and L:
• Configuration A ⇒ L′ has a SL
• Configuration B ⇒ B′ has a SL



2.5D-BR of Kn

Conf. A Conf. B
B and L SL of L′ SL of B′

L and T SL of T ′ SL of L′

T and R SL of R′ SL of T ′

R and B SL of B′ SL of R′

The same holds for L and T , for T and R, and for R and B

Two possible configurations for B and L:
• Configuration A ⇒ L′ has a SL
• Configuration B ⇒ B′ has a SL



2.5D-BR of Kn

⇒ B′ and T ′ have both a SL or L′ and R′ have both a SL

The same holds for L and T , for T and R, and for R and B

Two possible configurations for B and L:
• Configuration A ⇒ L′ has a SL
• Configuration B ⇒ B′ has a SL

Conf. A Conf. B
B and L SL of L′ SL of B′

L and T SL of T ′ SL of L′

T and R SL of R′ SL of T ′

R and B SL of B′ SL of R′



2.5D-BR of Kn

Suppose that L′ and R′ have both a SL



2.5D-BR of Kn

Suppose that L′ and R′ have both a SL



2.5D-BR of Kn

Suppose that L′ and R′ have both a SL

Unimaximal
sequence of
length 5



2.5D-BR of Kn

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR Γ of Kn, we show that:
• There is one line `h parallel to the x-axis and one line `v

parallel to the y-axis whose union intersect the
footprints of all boxes

• `h and `v intersect at most 10 boxes each
⇒ there can be at most 20 boxes in Γ

• There is a box that is intersected by both `h and `v
⇒ there can be at most 19 boxes in Γ

3

3
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A 2.5D-BR of K19



2.5D-GBR with a given

footprint: NP-hardness



2.5D-GBR: NP-hardness

Theorem 1 Deciding whether a given graph G admits a
2.5D-GBR with a given footprint (2.5DGBR-WGF) is
NP-complete, even if G is a path.



2.5D-GBR: NP-hardness

Theorem 1 Deciding whether a given graph G admits a
2.5D-GBR with a given footprint (2.5DGBR-WGF) is
NP-complete, even if G is a path.

• Reduction from
HAMILTONIAN-PATH-FOR-CUBIC-GRAPHS (HPCG)

• Let GH be an instance of HPCG
• We construct an instance 〈G,F 〉 of 2.5DGBR-WGF,

where G is a path



2.5D-GBR: NP-hardness

GH



2.5D-GBR: NP-hardness

Orthogonal drawing of GH s.t. every edge has exactly 1 bend and no
two vertices share the same x- or y-coordinate.
Bruckdorfer et al. 2014



2.5D-GBR: NP-hardness



2.5D-GBR: NP-hardness

This is the footprint F of the instance 〈G,F 〉



2.5D-GBR: NP-hardness

There are at most three squares in each row/column



2.5D-GBR: NP-hardness

GH

F

G
〈G,F 〉

. . .



2.5D-GBR: NP-hardness

G has a 2.5D-GBR
with footprint F⇔GH has a Hamiltonian

path



Footprint graph

Starting from F we define a graph F ∗ that:
• has a vertex for each square of F ;
• has an edge between two squares if they are horizontally

or vertically aligned

F F ∗



2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇔GH has a Hamiltonian
path

⇔
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2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

GH has a Hamiltonian
path ⇐



2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇔GH has a Hamiltonian
path

⇔

3
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2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇒

Every graphs that has a
2.5D-GBR with footprint F is
a spanning subgraph of F ∗

G is a path



2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇒

Every graphs that has a
2.5D-GBR with footprint F is
a spanning subgraph of F ∗

G is a path

⇒ G is a Hamiltonian path of
F ∗
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2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇐

Suppose that F ∗ has a
Hamiltonian path H∗

We have to choose the heights
of the squares of F so that all
the edges of H∗ are realized as
visibilities between the resulting
boxes

If an edge of H∗ connects consecutive squares on a
row/column, any choice is fine

If an edge of H∗ connects non-consecutive squares on a
row/column, their heights must be larger than the
heights of the square in the middle



2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇐
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path H∗
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2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇐

We assigne the heights to one
square per step following the
path H∗

hh h− 1



2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇐

We assigne the heights to one
square per step following the
path H∗

hh h− 1

Assigning height n to the first
square, all heights are
guaranteed to be positive



2.5D-GBR: NP-hardness

F ∗ has a Hamiltonian
path

G has a 2.5D-GBR
with footprint F

⇔GH has a Hamiltonian
path

⇔

3
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Open Problems

• Study the complexity of deciding if a given graph admits
a 2.5D-BR.
– Deciding if a graph admits an RVR is NP-hard

• Investigate other classes of graphs that admit a
2.5D-BR. For example, 1-planar graphs or partial
5-trees?
– There are both 1-planar graphs and partial 5-trees

not admitting an RVR
• Study the 2.5D-BRs under the strong visibility model

– All our results assume the weak visibility model




