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Visibility Representations (VR)

A Visibility Representation (VR) of a graph G maps
e the vertices of GG to non-overlapping geometric objects
e the edges of G to segments that do not intersect any
geometric object other than at their end-points
(visibilities)
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Bar Visibility Representations (BVR)

In a Bar Visibility Representation (BVR)
e vertices — horizontal segments (bars)
e edges — vertical segments
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Every planar graph admits a (weak) BVR
Graphs that admit a (strong) BVR have been characterized
Duchet et al. 1983, Rosenstiehl & Tarjan 1986,

Tamassia & Tollis 1991, Wismath 1985



Rectangle Visibility Representations (RVR)

In a Rectangle Visibility Representation (RVR)
e vertices — axis-aligned rectangles

e edges — horizontal or vertical segments
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At most 6n — 20 edges Hutchinson et al. 1999
Recognition is NP-hard in general Shermer 1996

and polynomial time solvable in some restricted cases
Biedl et al. 2016, Streinu & Whitesides 2003



Box Visibility Representations (BR)

In a Box Visibility Representation (BR)
e vertices — axis-aligned 3D boxes
e edges — segments parallel to the z-, y-, and z-axis

K6 admits a BR, while K154 does not
Fekete & Meijer 1999



2.5D Box Visibility Representation (2.5D-BR)

2.5D Box Visibility Representations (2.5D-BR):
e vertices — axis-aligned 3D boxes whose bottom faces lie
In the plane z =0
e edges — segments parallel to the - and y-axis
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Our results 1/2

e Every complete bipartite graph admits a 2.5D-BR

e [he complete graph K,, admits a 2.5D-BR if and only if
n < 19.

e Every graph with pathwidth at most 7 admits a
2.5D-BR, which can be computed in linear time



2.5D Grid Box Representations (2.5D-GBR)

2.5D Grid Box Visibility Representations (2.5D-GBR)
2.5D-BR such that the bottom face of each box is a unit
square with corners at integer coordinates
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e An n-vertex graph that admits a 2.5D-GBR has at most
4n — 64/n edges and that this bound is tight.



Our results 2/2

e An n-vertex graph that admits a 2.5D-GBR has at most
4n — 64/n edges and that this bound is tight.

e Deciding whether a given graph G admits a 2.5D-GBR
with a given footprint is NP-complete
— The footprint of a 2.5D-BR IT' is the set of bottom

faces of the boxes in T.
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2.5D-BR of K,

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR I' of K,,, we show that:

e There is one line ¢;, parallel to the x-axis and one line ¢,
parallel to the y-axis whose union intersect the
footprints of all boxes

e /5, and /¢, intersect at most 10 boxes each
= there can be at most 20 boxes in I

e Thereis a box that is intersected by both ¢ and Z,

= there can be at most 19 boxes in I
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Two observations

Let I' be a 2.5D-BR of K,

e We can assume that every box in I' has a distinct integer
height in the range |1, n]

e For any pair of rectangles in the footprint of I' there
exists a line that intersects both rectangles and that is
parallel to the x- or to the y-axis




2.5D-BR of K,

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR I' of K,,, we show that:

e There is one line ¢;, parallel to the x-axis and one line ¢,
parallel to the y-axis whose union intersect the
footprints of all boxes w——

e /5, and /¢, intersect at most 10 boxes each
= there can be at most 20 boxes in I

e Thereis a box that is intersected by both ¢ and Z,

= there can be at most 19 boxes in I




2.5D-BR of K,

Given a 2.5D-BR I' of K,,, let R be the set of rectangles in
the footprint of I'

o Let /5 and £, be a horizontal and a vertical line whose
union intersects the maximum number of rectangles in R
e Suppose that a rectangle a € R is not instersected

A




2.5D-BR of K,

Move ¢}, and £, as close as possible to a without changing
the set of instersected rectangles
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2.5D-BR of K,

Move ¢}, and £, as close as possible to a without changing
the set of instersected rectangles

e Let c be the rectangle that prevents £, to move closer to a
e Let b be the rectangle that prevents ¢;, to move closer to a

e there must be either a horizontal or a vertical line that
Intersects both b and ¢

ok o




2.5D-BR of K,

e c is Intersected by e b Is intersected by
both ¢,, and /¢, both ¢,, and /¢,
oA o
a a
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2.5D-BR of K,

e c is Intersected by
both ¢, and /¢,
— ¢, can be moved
closer to a
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e c is Intersected by
both ¢, and /¢,
— ¢, can be moved
closer to a
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2.5D-BR of K,

e c Is Iintersected by
both ¢, and /¢,
— ¢, can be moved
closer to a
A contradiction

e b Is intersected by

both ¢, and /¢,

— {;, can be moved
closer to a

A contradiction




2.5D-BR of K,

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR I' of K,,, we show that:

e There is one line ¢;, parallel to the x-axis and one line ¢,
parallel to the y-axis whose union intersect the
footprints of all boxes

e /5, and /¢, intersect at most 10 boxes each
= there can be at most 20 boxes in I’ —

e Thereis a box that is intersected by both ¢ and Z,
= there can be at most 19 boxes in I




Unimaximal sequences

A sequence of distinct integers is unimaximal if no element
of the sequence is smaller than both its predecessor and
SUCCESSOT.




Unimaximal sequences

Lemma 4 For all m > 1, in every sequence of (")) + 1
distinct integers, there exists at least one unimaximal

sequence of length m. Fekete et al. 1995

In a sequence of 11 distinct integers, there is a unimaximal
sequence of length 5
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sequence

Since the heights form a unimaximal sequence, no two
boxes see each other “above’ a third one.
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Unimaximal sequences

Suppose that ¢, (or £,) intersects 11 boxes

= There exist five boxes whose heights form a unimaximal
sequence

= Boxes must see each other at level 2z =0
= The five boxes and their visibilities form a BVR




Unimaximal sequences

Suppose that ¢ (or ¢,) intersects 11 boxes

= There exist five boxes whose heights form a unimaximal
sequence

= Boxes must see each other at level z = ()
= The five boxes and their visibilities form a BVR
= There is a BVR of K5 — A contradiction!



2.5D-BR of K,

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR I' of K,,, we show that:

e There is one line ¢;, parallel to the x-axis and one line ¢,
parallel to the y-axis whose union intersect the
footprints of all boxes

e /5, and /¢, intersect at most 10 boxes each
= there can be at most 20 boxes in I

e Thereis a box that is intersected by both ¢ and Z,

— there can be at most 19 boxes in I’ ¢




2.5D-BR of K,

Suppose that no box is intersected by both ¢, and £,
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Suppose that no box is intersected by both ¢, and £,




2.5D-BR of K,

Suppose that no box is intersected by both ¢;, and ¢,




2.5D-BR of K,

Suppose that no box is intersected by both ¢, and £,

Case 1. |L| # |R| and |B| # |T
Case 2. |L| # |R| and |B| = |T
Case 3. |L| = |R|and |B| = |T




2.5D-BR of K,

Suppose that no box is intersected by both ¢, and £,

Case 1. |L| # |R| and |B| # |T
Case 2. |L| # |R| and |B| = |T
Case 3. |L|=|R|and |B|=|T| =—




2.5D-BR of K,

Case 3. |L| = |R| and |B| = |T|
£y
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2.5D-BR of K,

Case 3. |L| = |R| and |B| = |T|
£y

R/
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2.5D-BR of K,
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Two possible configurations for L and B

Configuration B: all

boxes of B’ to the left

Of@L




2.5D-BR of K,
Case 3. |L| = |R| and |B| = |T|

Two possible configurations for L and B

B’ has a staircase

layout (SL)

Configuration B: all

boxes of B’ to the left

Of@L




2.5D-BR of K,

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for L and B

B’ has a staircase
layout (SL)

Configuration B: all
boxes of B’ to the left
of EL




2.5D-BR of K,

Two possible configurations for B and L:
e Configuration A = L’ has a SL
e Configuration B = B’ has a SL
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Two possible configurations for B and L:
e Configuration A = L’ has a SL
e Configuration B = B’ has a SL

The same holds for L and T’, for T’ and R, and for R and B

Conf. A | Conf. B
Band L | SLof L' | SL of B’
LandT | SLof 77 | SL of L'
T and R | SLof R | SL of T”
R and B | SL of B” | SL of R’




2.5D-BR of K,

Two possible configurations for B and L:
e Configuration A = L’ has a SL
e Configuration B = B’ has a SL

The same holds for L and T’, for T’ and R, and for R and B

Conf. A Conf. B

Band L | SLof L' | SL of B’
LandT | SLof 77 | SL of L'
T and R | SLof R | SL of T”
R and B | SL of B” | SL of R’

= B’ and 7" have both a SL or I’ and R’ have both a SL



2.5D-BR of K,

Suppose that L’ and R’ have both a SL



2.5D-BR of K,

Suppose that L’ and R’ have both a SL




2.5D-BR of K,

Suppose that L’ and R’ have both a SL

Unimaximal
sequence of
length 5




2.5D-BR of K,

Lemma 1 A complete graph admits a 2.5D-BR only if it
has at most 19 vertices.

Given a 2.5D-BR I' of K,,, we show that:

e There is one line ¢;, parallel to the x-axis and one line ¢,
parallel to the y-axis whose union intersect the
footprints of all boxes

e /5, and /¢, intersect at most 10 boxes each
= there can be at most 20 boxes in I

e Thereis a box that is intersected by both ¢ and Z,

= there can be at most 19 boxes in I




A 2.5D-BR of Klg
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footprint: NP-hardness
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2.5D-GBR: NP-hardness

Theorem 1 Deciding whether a given graph G admits a
2.5D-GBR with a given footprint (2.5DGBR-WGF) is
NP-complete, even if G is a path.

e Reduction from
HAMILTONIAN-PATH-FOR-CUBIC-GRAPHS (HPCG)
e Let Gy be an instance of HPCG

e We construct an instance (G, F') of 2.5DGBR-WGF,

where GG is a path
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2.5D-GBR: NP-hardness

r

L
Orthogonal drawing of Gy s.t. every edge has exactly 1 bend and no
two vertices share the same x- or y-coordinate.
Bruckdorfer et al. 2014
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2.5D-GBR: NP-hardness

HE O

This is the footprint F' of the instance (G, F')



2.5D-GBR: NP-hardness
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There are at most three squares in each row/column



2.5D-GBR: NP-hardness
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2.5D-GBR: NP-hardness

(G g has a Hamiltonian (- has a 2.5D-GBR
path S |with footprint F'



Footprint graph

Starting from F' we define a graph F'* that:
e has a vertex for each square of F’;
e has an edge between two squares if they are horizontally
or vertically aligned
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2.5D-GBR: NP-hardness

Every graphs that has a - _ _
2.5D-GBR with footprint F is  |#~ has a Hamiltonian
a spanning subgraph of F™* path

(G is a path [T

= (G is a Hamiltoni th of
o Is a Hamiltonian pa =T 3 :DCER
with footprint F
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2.5D-GBR: NP-hardness

Suppose that F™ has a F* has a Hamiltonian
Hamiltonian path H* path

We have to choose the heights
of the squares of F' so that all U’
the edges of H™ are realized as

visibilities between the resulting |G has a 2.5D-GBR
boxes with footprint F

If an edge of H™ connects consecutive squares on a
row/column, any choice is fine — =

If an edge of H™ connects non-consecutive squares on a
row/column, their heights must be larger than the
heights of the square in the middle *=_*H
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F* has a Hamiltonian
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2.5D-GBR: NP-hardness

We assigne the heights to one F* has 3 Hamiltonian
square per step following the path

path H*
}

(G has a 2.5D-GBR
with footprint F

Assigning height n to the first
square, all heights are
guaranteed to be positive
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(g has a Hamiltonian F™* has a Hamiltonian
path S~ |path

J

(G has a 2.5D-GBR
with footprint F



Open Problems

e Study the complexity of deciding if a given graph admits
a 2.5D-BR.
— Deciding if a graph admits an RVR is NP-hard

e Investigate other classes of graphs that admit a
2.5D-BR. For example, 1-planar graphs or partial
5-trees?
— There are both 1-planar graphs and partial 5-trees

not admitting an RVR

e Study the 2.5D-BRs under the strong visibility model

— All our results assume the weak visibility model






