Work started at the Bertinoro Workshop on Graph Drawing, BWGD 2016

Visibility Representations of Boxes in 2.5 Dimensions

Alessio Arleo¹, Carla Binucci¹, Emilio Di Giacomo¹, William S. Evans², Luca Grilli¹, Giuseppe Liotta¹, Henk Meijer³, Fabrizio Montecchiani¹, Sue Whitesides⁴, Stephen Wismath⁵

¹Università degli Studi di Perugia, Italy
²University of British Columbia, Canada
³University College Roosevelt, the Netherlands
⁴University of Victoria, Canada
⁵University of Lethbridge, Canada

Visibility Representations (VR)

A Visibility Representation (VR) of a graph G maps

- \bullet the vertices of G to non-overlapping geometric objects
- the edges of G to segments that do not intersect any geometric object other than at their end-points (visibilities)

Bar Visibility Representations (BVR)

In a Bar Visibility Representation (BVR)

- vertices → horizontal segments (*bars*)
- edges \rightarrow vertical segments

Every planar graph admits a (weak) BVR Graphs that admit a (strong) BVR have been characterized Duchet et al. 1983, Rosenstiehl & Tarjan 1986, Tamassia & Tollis 1991, Wismath 1985

Rectangle Visibility Representations (RVR)

In a Rectangle Visibility Representation (RVR)

- \bullet vertices \rightarrow axis-aligned rectangles
- $\bullet \ \text{edges} \rightarrow \text{horizontal}$ or vertical segments

At most 6n - 20 edges Hutchinson et al. 1999 Recognition is NP-hard in general Shermer 1996 and polynomial time solvable in some restricted cases Biedl et al. 2016, Streinu & Whitesides 2003

Box Visibility Representations (BR)

In a *Box Visibility Representation (BR)*

- \bullet vertices \rightarrow axis-aligned 3D boxes
- edges \rightarrow segments parallel to the x-, y-, and z-axis

 K_{56} admits a BR, while K_{184} does not Fekete & Meijer 1999

2.5D Box Visibility Representation (2.5D-BR)

2.5D Box Visibility Representations (2.5D-BR):

- vertices \rightarrow axis-aligned 3D boxes whose bottom faces lie in the plane z = 0
- edges \rightarrow segments parallel to the x- and y-axis

Our results 1/2

• Every complete bipartite graph admits a 2.5D-BR

Our results 1/2

• Every complete bipartite graph admits a 2.5D-BR

• The complete graph K_n admits a 2.5D-BR if and only if $n \leq 19$.

Our results 1/2

• Every complete bipartite graph admits a 2.5D-BR

- The complete graph K_n admits a 2.5D-BR if and only if $n \leq 19$.
- Every graph with pathwidth at most 7 admits a 2.5D-BR, which can be computed in linear time

2.5D Grid Box Representations (2.5D-GBR)

2.5D Grid Box Visibility Representations (2.5D-GBR)2.5D-BR such that the bottom face of each box is a unit square with corners at integer coordinates

Our results 2/2

• An *n*-vertex graph that admits a 2.5D-GBR has at most $4n - 6\sqrt{n}$ edges and that this bound is tight.

Our results 2/2

- An *n*-vertex graph that admits a 2.5D-GBR has at most $4n 6\sqrt{n}$ edges and that this bound is tight.
- Deciding whether a given graph G admits a 2.5D-GBR with a given footprint is NP-complete
 - The *footprint* of a 2.5D-BR Γ is the set of bottom faces of the boxes in Γ .

Lemma 1 A complete graph admits a 2.5D-BR only if it has at most 19 vertices.

Given a 2.5D-BR Γ of K_n , we show that:

- There is one line ℓ_h parallel to the x-axis and one line ℓ_v parallel to the y-axis whose union intersect the footprints of all boxes
- ℓ_h and ℓ_v intersect at most 10 boxes each \Rightarrow there can be at most 20 boxes in Γ
- There is a box that is intersected by both ℓ_h and ℓ_v \Rightarrow there can be at most 19 boxes in Γ

Two observations

Let Γ be a 2.5D-BR of K_n

Two observations

Let Γ be a 2.5D-BR of K_n

- We can assume that every box in Γ has a distinct integer height in the range [1,n]

Two observations

Let Γ be a 2.5D-BR of K_n

- We can assume that every box in Γ has a distinct integer height in the range [1,n]
- For any pair of rectangles in the footprint of Γ there exists a line that intersects both rectangles and that is parallel to the x- or to the y-axis

Lemma 1 A complete graph admits a 2.5D-BR only if it has at most 19 vertices.

Given a 2.5D-BR Γ of K_n , we show that:

- There is one line line line line reaction intersect the parallel to the y-axis whose union intersect the footprints of all boxes
- ℓ_h and ℓ_v intersect at most 10 boxes each \Rightarrow there can be at most 20 boxes in Γ
- There is a box that is intersected by both ℓ_h and ℓ_v \Rightarrow there can be at most 19 boxes in Γ

Given a 2.5D-BR Γ of K_n , let \mathcal{R} be the set of rectangles in the footprint of Γ

- Let ℓ_h and ℓ_v be a horizontal and a vertical line whose union intersects the maximum number of rectangles in \mathcal{R}
- Suppose that a rectangle $a \in \mathcal{R}$ is not instersected

- Let c be the rectangle that prevents ℓ_v to move closer to a
- Let b be the rectangle that prevents ℓ_h to move closer to a

- Let c be the rectangle that prevents ℓ_v to move closer to a
- Let b be the rectangle that prevents ℓ_h to move closer to a
- there must be either a horizontal or a vertical line that intersects both b and c

- Let c be the rectangle that prevents ℓ_v to move closer to a
- Let b be the rectangle that prevents ℓ_h to move closer to a
- there must be either a horizontal or a vertical line that intersects both b and c

• c is intersected by both ℓ_v and ℓ_h

• b is intersected by both ℓ_v and ℓ_h

• c is intersected by both ℓ_v and ℓ_h $\Rightarrow \ell_v$ can be moved closer to a • b is intersected by both ℓ_v and ℓ_h $\Rightarrow \ell_h$ can be moved closer to a

• c is intersected by both ℓ_v and ℓ_h $\Rightarrow \ell_v$ can be moved closer to a • b is intersected by both ℓ_v and ℓ_h $\Rightarrow \ell_h$ can be moved closer to a

• c is intersected by both ℓ_v and ℓ_h $\Rightarrow \ell_v$ can be moved closer to a**A contradiction** • b is intersected by both ℓ_v and ℓ_h $\Rightarrow \ell_h$ can be moved closer to a**A contradiction**

Lemma 1 A complete graph admits a 2.5D-BR only if it has at most 19 vertices.

Given a 2.5D-BR Γ of K_n , we show that:

- There is one line ℓ_h parallel to the x-axis and one line ℓ_v parallel to the y-axis whose union intersect the footprints of all boxes ✓
- ℓ_h and ℓ_v intersect at most 10 boxes each \Rightarrow there can be at most 20 boxes in Γ
- There is a box that is intersected by both ℓ_h and ℓ_v \Rightarrow there can be at most 19 boxes in Γ

A sequence of distinct integers is *unimaximal* if no element of the sequence is smaller than both its predecessor and successor.

Lemma 4 For all m > 1, in every sequence of $\binom{m}{2} + 1$ distinct integers, there exists at least one unimaximal sequence of length m. Fekete et al. 1995

In a sequence of 11 distinct integers, there is a unimaximal sequence of length 5

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

The heights of these boxes form a sequence of distinct integers

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

The heights of these boxes form a sequence of distinct integers

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

Since the heights form a unimaximal sequence, no two boxes see each other "above" a third one.

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

Since the heights form a unimaximal sequence, no two boxes see each other "above" a third one.

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

Since the heights form a unimaximal sequence, no two boxes see each other "above" a third one.

 \Rightarrow Boxes must see each other at level z = 0

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

 \Rightarrow Boxes must see each other at level z = 0

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

 \Rightarrow Boxes must see each other at level z = 0

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

- \Rightarrow Boxes must see each other at level z = 0
- \Rightarrow The five boxes and their visibilities form a BVR

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

- \Rightarrow Boxes must see each other at level z = 0
- \Rightarrow The five boxes and their visibilities form a BVR

Suppose that ℓ_h (or ℓ_v) intersects 11 boxes

 \Rightarrow There exist five boxes whose heights form a unimaximal sequence

- \Rightarrow Boxes must see each other at level z = 0
- \Rightarrow The five boxes and their visibilities form a BVR
- \Rightarrow There is a BVR of $K_5 A$ contradiction!

Lemma 1 A complete graph admits a 2.5D-BR only if it has at most 19 vertices.

Given a 2.5D-BR Γ of K_n , we show that:

- There is one line ℓ_h parallel to the x-axis and one line ℓ_v parallel to the y-axis whose union intersect the footprints of all boxes ✓
- ℓ_h and ℓ_v intersect at most 10 boxes each \Rightarrow there can be at most 20 boxes in $\Gamma \checkmark$
- There is a box that is intersected by both ℓ_h and ℓ_v \Rightarrow there can be at most 19 boxes in Γ

Suppose that no box is intersected by both ℓ_h and ℓ_v

Suppose that no box is intersected by both ℓ_h and ℓ_v

Suppose that no box is intersected by both ℓ_h and ℓ_v

Suppose that no box is intersected by both ℓ_h and ℓ_v

Case 1. $|L| \neq |R|$ and $|B| \neq |T|$ Case 2. $|L| \neq |R|$ and |B| = |T|Case 3. |L| = |R| and |B| = |T|

Suppose that no box is intersected by both ℓ_h and ℓ_v

Case 1. $|L| \neq |R|$ and $|B| \neq |T|$ Case 2. $|L| \neq |R|$ and |B| = |T|Case 3. |L| = |R| and |B| = |T|

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for $L \mbox{ and } B$

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for L and B l_1 b_1 ℓ_L **Configuration A**: at least one box of B' to the right of ℓ_L

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for L and B l_1 b_1 ℓ_L **Configuration A**: at least one box of B' to the right of ℓ_L

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for L and B l_1 b_1 ℓ_L **Configuration A**: at L' has a least one box of B' to staircase the right of ℓ_L layout (SL)

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for $L \mbox{ and } B$

Configuration A: at

least one box of B' to the right of ℓ_L

L' has a staircase layout (SL)

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for $L \mbox{ and } B$

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for $L \mbox{ and } B$

Case 3. |L| = |R| and |B| = |T|

Two possible configurations for $L \mbox{ and } B$

B' has a *staircase layout (SL)*

Configuration **B**: all boxes of B' to the left of ℓ_L

Two possible configurations for B and L:

- Configuration $A \Rightarrow L'$ has a SL
- Configuration $\mathsf{B} \Rightarrow B'$ has a SL

Two possible configurations for B and L:

- Configuration $A \Rightarrow L'$ has a SL
- Configuration $\mathsf{B} \Rightarrow B'$ has a SL

The same holds for L and T, for T and R, and for R and B

Two possible configurations for B and L:

- Configuration $A \Rightarrow L'$ has a SL
- Configuration $B \Rightarrow B'$ has a SL

The same holds for L and T, for T and R, and for R and B

	Conf. A	Conf. B
B and L	SL of L'	SL of B'
L and T	SL of T'	SL of L'
T and R	SL of R'	SL of T'
R and B	SL of B'	SL of R'

Two possible configurations for B and L:

- Configuration $A \Rightarrow L'$ has a SL
- Configuration $B \Rightarrow B'$ has a SL

The same holds for L and T, for T and R, and for R and B

	Conf. A	Conf. B
B and L	SL of L'	SL of B'
L and T	SL of T'	SL of L'
T and R	SL of R'	SL of T'
R and B	SL of B'	SL of R'

 $\Rightarrow B'$ and T' have both a SL or L' and R' have both a SL

Suppose that L' and R' have both a SL

Suppose that L' and R' have both a SL

Suppose that L' and R' have both a SL

Lemma 1 A complete graph admits a 2.5D-BR only if it has at most 19 vertices.

Given a 2.5D-BR Γ of K_n , we show that:

- There is one line ℓ_h parallel to the x-axis and one line ℓ_v parallel to the y-axis whose union intersect the footprints of all boxes ✓
- ℓ_h and ℓ_v intersect at most 10 boxes each \Rightarrow there can be at most 20 boxes in $\Gamma \checkmark$
- There is a box that is intersected by both ℓ_h and ℓ_v \Rightarrow there can be at most 19 boxes in Γ

A 2.5D-BR of K_{19}

2.5D-GBR with a given footprint: NP-hardness

Theorem 1 Deciding whether a given graph G admits a 2.5D-GBR with a given footprint (2.5DGBR-WGF) is NP-complete, even if G is a path.

Theorem 1 Deciding whether a given graph G admits a 2.5D-GBR with a given footprint (2.5DGBR-WGF) is NP-complete, even if G is a path.

- Reduction from HAMILTONIAN-PATH-FOR-CUBIC-GRAPHS (HPCG)
- Let G_H be an instance of HPCG
- We construct an instance $\langle G,F\rangle$ of 2.5DGBR-WGF, where G is a path

Orthogonal drawing of G_H s.t. every edge has exactly 1 bend and no two vertices share the same x- or y-coordinate.

Bruckdorfer et al. 2014

This is the footprint F of the instance $\langle G, F \rangle$

There are at most three squares in each row/column

 G_H has a Hamiltonian path

Footprint graph

Starting from F we define a graph F^* that:

- has a vertex for each square of F;
- has an edge between two squares if they are horizontally or vertically aligned

 G_H has a Hamiltonian path

 F^* has a Hamiltonian path

 G_H has a Hamiltonian path

 $\stackrel{\checkmark}{\Leftrightarrow} F^* \text{ has a Hamiltonian} \\ \text{path}$

 F^{\ast} has a Hamiltonian path

\bigwedge

Every graphs that has a 2.5D-GBR with footprint F is a spanning subgraph of F^*

 F^* has a Hamiltonian path

\bigwedge

Every graphs that has a 2.5D-GBR with footprint F is a spanning subgraph of F^*

 ${\boldsymbol{G}}$ is a path

 F^* has a Hamiltonian path

Every graphs that has a 2.5D-GBR with footprint F is a spanning subgraph of F^*

 ${\boldsymbol{G}}$ is a path

 $\Rightarrow G$ is a Hamiltonian path of F^*

 F^* has a Hamiltonian path

Suppose that F^* has a Hamiltonian path H^*

 F^* has a Hamiltonian path

Suppose that F^* has a Hamiltonian path H^*

We have to choose the heights of the squares of F so that all the edges of H^* are realized as visibilities between the resulting boxes

Suppose that F^* has a Hamiltonian path H^*

We have to choose the heights of the squares of F so that all the edges of H^* are realized as visibilities between the resulting boxes

path
V
G has a 2.5D-GBR with footprint F

If an edge of H^* connects consecutive squares on a row/column, any choice is fine

Suppose that F^* has a Hamiltonian path H^*

We have to choose the heights of the squares of F so that all the edges of H^* are realized as visibilities between the resulting boxes

If an edge of H^* connects consecutive squares on a row/column, any choice is fine

If an edge of H^* connects non-consecutive squares on a row/column, their heights must be larger than the heights of the square in the middle

 F^{\ast} has a Hamiltonian path

 \bigvee

We assigne the heights to one square per step following the path H^*

 F^* has a Hamiltonian path

\bigvee

We assigne the heights to one square per step following the path H^*

h T F^* has a Hamiltonian path

We assigne the heights to one square per step following the path H^*

h+1

 F^* has a Hamiltonian path

 \bigvee

We assigne the heights to one square per step following the path H^*

h+1 h h+1

 F^* has a Hamiltonian path

We assigne the heights to one square per step following the path H^*

 F^* has a Hamiltonian path

We assigne the heights to one square per step following the path H^*

 F^* has a Hamiltonian path

We assigne the heights to one square per step following the path H^*

h h - 1 h

 F^* has a Hamiltonian path

We assigne the heights to one square per step following the path H^*

Assigning height n to the first square, all heights are guaranteed to be positive

 F^* has a Hamiltonian path

 G_H has a Hamiltonian path

 $\stackrel{\checkmark}{\Leftrightarrow} \begin{array}{c} F^* \text{ has a Hamiltonian} \\ path \end{array}$

Open Problems

- Study the complexity of deciding if a given graph admits a 2.5D-BR.
 - Deciding if a graph admits an RVR is NP-hard
- Investigate other classes of graphs that admit a 2.5D-BR. For example, 1-planar graphs or partial 5-trees?
 - There are both 1-planar graphs and partial 5-trees not admitting an RVR
- Study the 2.5D-BRs under the strong visibility model
 All our results assume the weak visibility model

