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Visibility Representations: State of the Art
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Bar Visibility representation (BVR) of a planar graph G:
Vertices → Horizontal bars
Edges → Vertical visibilities

Every planar graph admits a BVR
[Duchet et al. 1983, Thomassen 1984, Wismath 1985, Rosenthiel & Tarjan 1986,

Tamassia & Tollis 1986]



Visibility Representations: State of the Art
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Rectangle Visibility representation (RVR) of a graph G:
Vertices → Axis-aligned rectangles
Edges → Horizontal/Vertical visibilities
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Recognition is NP-complete in general [Shermer 1996] and polynomial if
the embedding is fixed and must be preserved [Biedl, Liotta, M. 2016]

Not all 1-planar graphs admit an RVR [Biedl, Liotta, M. 2016]



A new visibility model

Ortho-polygon Visibility representation (OPVR) of a graph G:
Vertices → Orthogonal polygons
Edges → Horizontal/Vertical visibilities

What embedded graphs can we draw as OPVRs?
Can we realize all 1-plane graphs?
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A new visibility model

Ortho-polygon Visibility representation (OPVR) of a graph G:
Vertices → Orthogonal polygons
Edges → Horizontal/Vertical visibilities

What embedded graphs can we draw as OPVRs?
Can we realize all 1-plane graphs?
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graph with no OPVR
(although it has thickness two)



A new visibility model

Ortho-polygon Visibility representation (OPVR) of a graph G:
Vertices → Orthogonal polygons
Edges → Horizontal/Vertical visibilities

The vertex complexity of an OPVR is the smallest k such that any
polygon representing a vertex has at most k reflex corners.

Minimizing the vertex complexity is NP-hard in general, what if the
embedding is fixed?
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Our contribution

1. Quadratic-time algorithm to test if an embedded graph admits an
embedding-preserving OPVR.
Every 1-plane graph has an embedding-preserving OPVR.
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Our contribution

4. Ω(n) lower bound for the v.c. of 2-connected 1-planar graphs. But
the absence of a particular subgraph guarantees v.c. at most 22.
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Our contribution

5. Experiments on 1-plane graphs to estimate both the v.c. in practice
and the percentage of vertices that are not rectangles.
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Testing & Minimization for

General Embedded Graphs



OPVRs and Orthogonal Drawings

Observation 1 An OPVR with vertex complexity k of an embedded
graph G can be regarded as an orthogonal drawing such that:

• ortho-polygons are cycles with at most 2k + 4 bends
• visibilities are straight-line segments (no bends)

The idea is to test whether G admits a suitable orthogonal drawing,
through the topology-shape-metrics framework [Tamassia, 1987]



Testing

Input: an embedded graph G

G



Testing

G = replace each vertex of G with an expansion cycle and each
crossing with a dummy vertex

G

G admits an OPVR ⇐⇒ G admits an orthogonal drawing such that
the edges of G (bold) are bendless



Testing

N

Construct a flow network N based on the TSM framework
G has the desired orthogonal drawing ⇐⇒ N has a feasible flow.



Testing

Simplifcations:
1. The original edges of G cannot bend → we can remove the
corresponding dual edges from the flow network.
2. Each “attaching” vertex supplies 2 units of flow towards its
expansion cycle and 1 unit of flow towards each other face. Since the
demand of each face is known → we can remove vertex-face edges
and update the demand of each face
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Testing

N
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The flow network N is uncapacited and undirected. Hence, it has a
solution if and only if, for each connected component, the supply is
equal to the demand.
→ This condition always holds for 1-plane graphs.
→ We can test if an OPVR of G exists in O(n2) time.

4+4+4+4+4+4-11-3-2-2-2-1-1-1-1=0

SUPPLY DEMAND



Minimization

We can use “bottleneck” gadgets to control the amount of flow
passing through each expansion cycles.

k

The bold edge has capacity k to ensure that there will be at most k
reflex corners in the corresponding ortho-polygon



Testing & Minimization

For a fixed k, we apply a min-cost flow algorithm to test if G has an

OPVR with v.c. at most k in O(n
5
2 log

1
2 n) [Garg & Tamassia, 1996].

Binary search in the range [0, 4n] to find the minimum value of k s.t.
an OPVR of G with v.c. k exists.

Theorem 1 Let G be an n-vertex embedded graph. There exists an
O(n2)-time algorithm that tests if G admits an embedding preserving
OPVR and, if so, it computes an embedding preserving OPVR with

minimum vertex complexity γ in O(n
5
2 log

3
2 n) time.



Bounds & Minimization for

1-plane Graphs



1-plane Graphs

An embedded graph is 1-plane if it has at most one crossing per edge.

Not all 1-plane graphs admit an embedding-preserving RVR (i.e., an
OPVR with vertex complexity 0) [Biedl, Liotta, M., 2016]

Every 1-plane graph has an embedding preserving OPVR.
Can we obtain small vertex complexity?



OPVRs of 1-plane Graphs with Small V.C.

Input: A 3-connected 1-plane graph G
Output: An embedding-preserving OPVR of G with small vertex
complexity
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OPVRs of 1-plane Graphs with Small V.C.

Input: A 3-connected 1-plane graph G
Output: An embedding-preserving OPVR of G with small vertex
complexity
• Color blue and red the edges of G such that both blue and red

edges induce a plane graph, and the red graph has small degree
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OPVRs of 1-plane Graphs with Small V.C.

Input: A 3-connected 1-plane graph G
Output: An embedding-preserving OPVR of G with small vertex
complexity
• Color blue and red the edges of G such that both blue and red

edges induce a plane graph, and the red graph has small degree
• Compute a BVR of the blue graph
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OPVRs of 1-plane Graphs with Small V.C.

Input: A 3-connected 1-plane graph G
Output: An embedding-preserving OPVR of G with small vertex
complexity
• Color blue and red the edges of G such that both blue and red

edges induce a plane graph, and the red graph has small degree
• Compute a BVR of the blue graph
• Reinsert the red edges by adding (few) vertical bars to each

horizontal bar
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OPVRs of 1-plane Graphs with Small V.C.

Input: A 3-connected 1-plane graph G
Output: An embedding-preserving OPVR of G with small vertex
complexity
• Color blue and red the edges of G such that both blue and red

edges induce a plane graph, and the red graph has small degree
• Compute a BVR of the blue graph
• Reinsert the red edges by adding (few) vertical bars to each

horizontal bar
• Each “rake”-shaped object can be used as the skeleton of an

ortho-polygon that has two reflex corners per vertical bar
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Edge Partitions of 1-plane Graphs

An edge partition of a 1-plane graph G is a coloring of its edges with
one of two colors, red and blue, such that both the red graph GR

induced by the red edges and the blue graph GB induced by the blue
edges are plane.

Every optimal (i.e., with 4n− 8 edges) 1-plane graph has an edge
partition such that GR has maximum vertex degree 4 (worst-case
optimal). [Lenhart, Liotta, M., 2015]

Every 1-plane graph has an edge partition such that GR is a forest.
[Ackerman, 2013]



Edge Partitions of 1-plane Graphs

Lemma 1 Every 3-connected 1-plane graph has an edge partition
such that GR has maximum vertex degree 6 (worst-case optimal),
which can be computed in O(n) time.
Proof sketch:
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Edge Partitions of 1-plane Graphs

Lemma 1 Every 3-connected 1-plane graph has an edge partition
such that GR has maximum vertex degree 6 (worst-case optimal),
which can be computed in O(n) time.
Proof sketch:
• Augment each crossing to become a K4

• Remove one special edge from each crossing (the one that does
not belong to a different K4)



Edge Partitions of 1-plane Graphs

Lemma 1 Every 3-connected 1-plane graph has an edge partition
such that GR has maximum vertex degree 6 (worst-case optimal),
which can be computed in O(n) time.
Proof sketch:
• Augment each crossing to become a K4

• Remove one special edge from each crossing (the one that does
not belong to a different K4)

This edge cannot be removed because
it is also part of another K4



Edge Partitions of 1-plane Graphs

Lemma 1 Every 3-connected 1-plane graph has an edge partition
such that GR has maximum vertex degree 6 (worst-case optimal),
which can be computed in O(n) time.
Proof sketch:
• Augment each crossing to become a K4

• Remove one special edge from each crossing (the one that does
not belong to a different K4)

But we can remove this edge instead



Edge Partitions of 1-plane Graphs

Lemma 1 Every 3-connected 1-plane graph has an edge partition
such that GR has maximum vertex degree 6 (worst-case optimal),
which can be computed in O(n) time.
Proof sketch:
• Augment each crossing to become a K4

• Remove one special edge from each crossing (the one that does
not belong to a different K4)

• Triangulate the graph and compute Schnyder trees



Edge Partitions of 1-plane Graphs

Lemma 1 Every 3-connected 1-plane graph has an edge partition
such that GR has maximum vertex degree 6 (worst-case optimal),
which can be computed in O(n) time.
Proof sketch:
• Augment each crossing to become a K4

• Remove one special edge from each crossing (the one that does
not belong to a different K4)

• Triangulate the graph and compute Schnyder trees
• Between two crossing edges, color red the one whose endpoints are

both incident to an outgoing edge

At most 3 outgoing edges per vertex
+ at most two K4 sharing the same
outgoing edge → at most 6 red
edges per vertex



Edge Partitions of 1-plane Graphs

Lemma 1 Every 3-connected 1-plane graph has an edge partition
such that GR has maximum vertex degree 6 (worst-case optimal),
which can be computed in O(n) time.
Proof sketch:
• Augment each crossing to become a K4

• Remove one special edge from each crossing (the one that does
not belong to a different K4)

• Triangulate the graph and compute Schnyder trees
• Between two crossing edges, color red the one whose endpoints are

both incident to an outgoing edge



Edge Partitions of 1-plane Graphs

Lemma 1 Every 3-connected 1-plane graph has an edge partition
such that GR has maximum vertex degree 6 (worst-case optimal),
which can be computed in O(n) time.
Proof sketch:
• Augment each crossing to become a K4

• Remove one special edge from each crossing (the one that does
not belong to a different K4)

• Triangulate the graph and compute Schnyder trees
• Between two crossing edges, color red the one whose endpoints are

both incident to an outgoing edge of the kite
• Remove dummy edges and color blue the remaining edges



3-connected 1-plane Graphs

Theorem 2 Let G be a 3-connected 1-plane graph with n vertices.
There exists an O(n)-time algorithm that computes an an
embedding-preserving OPVR of G with vertex complexity at most 12,
on an integer grid of size O(n)×O(n).



3-connected 1-plane Graphs

Theorem 2 Let G be a 3-connected 1-plane graph with n vertices.
There exists an O(n)-time algorithm that computes an an
embedding-preserving OPVR of G with vertex complexity at most 12,
on an integer grid of size O(n)×O(n).

Theorem 3 Let G be a 3-connected 1-plane graph with n vertices.
There exists an O(n

7
4

√
log n)-time algorithm that computes an

embedding-preserving OPVR γ of G with minimum vertex complexity,
on an integer grid of size O(n)×O(n).

→ Small range where to search for the minimum k such that G has
an OPVR with vertex complexity k
→ Maximum cost of the flow in the flow network is O(n)



2-connected 1-plane Graphs

Theorem 4 For every positive integer n, there exists a 2-connected
1-planar graph G with O(n) vertices such that, for every 1-planar
embedding of G, any embedding preserving OPVR of G has vertex
complexity Ω(n).
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2-connected 1-plane Graphs

Theorem 4 For every positive integer n, there exists a 2-connected
1-planar graph G with O(n) vertices such that, for every 1-planar
embedding of G, any embedding preserving OPVR of G has vertex
complexity Ω(n).

Theorem 5 Let G be a 2-connected 1-plane graph with n vertices
and no W-configurations. A 1-planar OPVR of G with vertex
complexity at most 22 on an integer grid of size O(n)×O(n) can be
computed in O(n) time.
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Experiments & Open Problems



Experiments

We implemented the minimization algorithm in GDToolkit to compute
OPVRs with min. v. c. of a large set of 1-plane graphs (n ≤ 100).

• More than 75% of the vertices are drawn as rectangles.

• All OPVRs computed for 2-connected 1-plane graphs had v. c. ≤ 3.

• All OPVRs computed for 3-connected 1-plane graphs have v.c. ≤ 2
(which is the lower bound we proved).



Open Problems

OP1: Close the gap between the upper bound (12) and the lower
bound (2) on the vertex complexity of OPVRs of 3-connected 1-plane
graphs.
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