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e crossing angle
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e cvery edge is crossed at most k times
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e maximal 1-planar graphs have at least 2.22n edges
|Barat, Toth 15]

e There exist maximal 1-planar graphs
with 2.647n edges |Brandenburg et al. 13]
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Density of k-planar graphs

Upper Bound

planar 3n — 6
I-planar | 4n — 8
2-planar @ — 1@Tight ? [Pach, Toéth 97
3-planar / @571 — 1D [Pach et al. 06
4-planar / 6m — 12 [Ackerman 15
k-planar / 4.1208vVkn [Pach, Téth 97

k<2 — Tight

kZS%?
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Theorem: Non simple 3-planar graphs on n

vertices have at most 5.5n — 11 edges.
This bound is tight.

Proof:

1. upper bound
2. construction

e For simple graphs the same bound holds
e The bound is not known to be tight
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1-planar 2-planar 3-planar

Ky

m K Kg — e

Planar graph with faces of length 6

Euler’s formula: n —2 =e,—f =n—2=2f

Planar edges: e,= 3f

Interior edges: e.= 8f

e Total edges: e =ep+e.=11f

=e=1(n—2)=>55n—11
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Construction of Pach et al.

6 edges

5.0n — 15 edges

(5.5m — 11)
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Other constructions:

two 6-gons
8 interior edges
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Upper Bound
General Idea:
e Plane subgraph G,

e spanning, connected
e maximum number of edges e, -

planar edges: e, < 3n — 6

e Bound the remaining edges e,
crossing edges: e

e crossing edges cross with planar edges
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e Maximal plane subgraph G,

e triangular faces "

e ¢, =3n—0

e crossing edges

middle part . .
e a crossing edge consists of

sticks and middle parts

e sticks lie inside faces

e count sticks:
= 2e¢.=7#STICKS

sticks
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A triangular face has at most 3 sticks

(3,0,0) (2,1,0) (1,1,1)

o If all faces have 3 sticks e If half of faces have 3 sticks
e.=3f/2=3(n—2) e.=3f/44+2f/4="5(n—2)/2
e =epte.= 6(n — 2) e =e,+e.= 11(n —2)/2
(ep=3n —6)

e Total: 6m — 12 e Total: 5.5n — 11

e Prove that at most half
faces have 3 sticks
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At most half faces have 3 sticks

e Associate (uniquely) a face with 3 sticks
with a face with at most 2 sticks

(3,0,0) (2,1,0) (1,1,1)
—~———
v1 (0)
(2,1,0) e other cases —
Uy . .
U2 similarly
(£2)
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Maximal plane subgraph G,

e triangular faces A
e ¢, =3n—0
e 11 lemmas

— connectivity of G,
— properties of sticks and middle parts

e assumptions
— ( is optimal
— (G, is maximal
— I'(G) has minimum number of crossings
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