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Restrictions:
• number of crossings

• crossing configurations

• crossing angle

k-planar

quasi-planar fan-planar
fan-crossing free

RAC, LAC



k-planar graphs

• every edge is crossed at most k times



k-planar graphs

• every edge is crossed at most k times

• optimal: the maximum number of edges



k-planar graphs

• every edge is crossed at most k times

• maximal: if no other edges can be added
• optimal: the maximum number of edges



k-planar graphs

• every edge is crossed at most k times

1-planar graphs

• maximal: if no other edges can be added
• optimal: the maximum number of edges



k-planar graphs

• every edge is crossed at most k times

1-planar graphs
• optimal 1-planar graphs have 4n− 8 edges

• maximal: if no other edges can be added
• optimal: the maximum number of edges

characterization



k-planar graphs

• every edge is crossed at most k times

1-planar graphs
• optimal 1-planar graphs have 4n− 8 edges

• maximal 1-planar graphs have at least 2.22n edges

• maximal: if no other edges can be added
• optimal: the maximum number of edges

• There exist maximal 1-planar graphs
with 2.647n edges

characterization

[Barát, Tóth 15]

[Brandenburg et al. 13]
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(k + 2)(n− 2)

6n− 12
7n− 14

planar 3n− 6
1-planar 4n− 8
2-planar 5n− 10
3-planar
4-planar

[Pach, Tóth 97]

k-planar 4.1208
√

kn

[Pach et al. 06]5.5n− 11
[Ackerman 15]6n− 12

[Pach, Tóth 97]

Upper Bound

?

k ≤ 2 → Tight

k ≥ 3 →?

Tight
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Our Contribution

Theorem: Non simple 3-planar graphs on n
vertices have at most 5.5n− 11 edges.
This bound is tight.

• For simple graphs the same bound holds

1. upper bound
2. construction

Proof:

• The bound is not known to be tight



Lower Bound
1-planar

K4



Lower Bound
1-planar 2-planar

K4 K5



Lower Bound
1-planar 2-planar 3-planar

K4 K5 K6



Lower Bound
1-planar 2-planar 3-planar

K4 K5 K6



Lower Bound
1-planar 2-planar 3-planar

K4 K5 K6 − e



Lower Bound
1-planar 2-planar 3-planar

K4 K5

Planar graph with faces of length 6

K6 − e



Lower Bound
1-planar 2-planar 3-planar

K4 K5

Planar graph with faces of length 6
• Euler’s formula: n− 2 =ep−f

K6 − e



Lower Bound
1-planar 2-planar 3-planar

K4 K5

Planar graph with faces of length 6
• Euler’s formula: n− 2 =ep−f

• Planar edges: ep= 3f

K6 − e



Lower Bound
1-planar 2-planar 3-planar

K4 K5

Planar graph with faces of length 6
• Euler’s formula: n− 2 =ep−f

• Planar edges: ep= 3f

⇒ n− 2 = 2f

K6 − e



Lower Bound
1-planar 2-planar 3-planar

K4 K5

Planar graph with faces of length 6
• Euler’s formula: n− 2 =ep−f

• Planar edges: ep= 3f

• Interior edges: ec= 8f

⇒ n− 2 = 2f

K6 − e



Lower Bound
1-planar 2-planar 3-planar

K4 K5

Planar graph with faces of length 6
• Euler’s formula: n− 2 =ep−f

• Planar edges: ep= 3f

• Interior edges: ec= 8f

• Total edges: e =ep+ec= 11f

⇒ n− 2 = 2f

⇒ e = 11
2 (n− 2) = 5.5n− 11

K6 − e
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Lower Bound

Construction of Pach et al.
v1

v2
v3

v4
v5

v6
v1

v1 v2

v3

v4v5

v6
5.5n− 15 edges
6 edges

(5.5n− 11)
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Lower Bound

Other constructions:

two 6-gons
8 interior edges
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Upper Bound

• Plane subgraph Gp

• spanning, connected
• maximum number of edges ep

• crossing edges cross with planar edges

General Idea:

• Bound the remaining edges ec

planar edges: ep ≤ 3n− 6

crossing edges: ec
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Upper Bound

• Maximal plane subgraph Gp

• triangular faces
• ep = 3n− 6

• crossing edges

• a crossing edge consists of
sticks and middle parts

• sticks lie inside faces
• count sticks:
⇒ 2ec=#STICKS

sticks

middle part

BB
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Upper Bound

A triangular face has at most 3 sticks

• If all faces have 3 sticks

(3, 0, 0) (2, 1, 0) (1, 1, 1)

ec= 3f/2 = 3(n− 2)
e =ep+ec= 6(n− 2)
(ep= 3n− 6)

• If half of faces have 3 sticks
ec= 3f/4 + 2f/4 = 5(n− 2)/2
e =ep+ec= 11(n− 2)/2

• Prove that at most half
faces have 3 sticks

• Total: 6n− 12 • Total: 5.5n− 11
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(0)

(0)

(3, 0, 0) (2, 1, 0) (1, 1, 1)

(2, 1, 0)

(≤ 2)

v1

v2

v3

v4
• other cases →

similarly
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Upper Bound

Maximal plane subgraph Gp

• triangular faces
• ep = 3n− 6

• 11 lemmas
– connectivity of Gp

– properties of sticks and middle parts

• assumptions
– G is optimal
– Gp is maximal
– Γ(G) has minimum number of crossings

BB
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• Characterization of optimal 3-planar graphs

• Is Gp fully triangulated for k = 4?

• Tight upper bound for simple 3-planar

Thank you
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