

19-21 September 2016 Athens, Greece

On the density of non-Simple 3-Planar Graphs

Michael Bekos¹

Michael Kaufmann¹

Chrysanthi Raftopoulou²

¹Universität Tübingen, Germany ²National Technical University of Athens, Greece

Restrictions:

Restrictions:

• number of crossings

k-planar

Restrictions:

• number of crossings

k-planar

• crossing configurations

Restrictions:

• number of crossings

k-planar

• crossing configurations

• crossing angle

RAC, LAC

• every edge is crossed at most k times

• every edge is crossed at most k times

• **optimal:** the maximum number of edges

- every edge is crossed at most k times
 - **optimal:** the maximum number of edges
 - maximal: if no other edges can be added

- every edge is crossed at most k times
 - **optimal:** the maximum number of edges
 - maximal: if no other edges can be added
- 1-planar graphs

- every edge is crossed at most k times
 - **optimal:** the maximum number of edges
 - maximal: if no other edges can be added
- 1-planar graphs
 - optimal 1-planar graphs have 4n 8 edges characterization

- every edge is crossed at most k times
 - **optimal:** the maximum number of edges
 - maximal: if no other edges can be added
- 1-planar graphs
 - optimal 1-planar graphs have 4n 8 edges characterization
 - maximal 1-planar graphs have at least 2.22*n* edges [*Barát, Tóth* 15]
 - There exist maximal 1-planar graphs with 2.647n edges [Brandenburg et al. 13]

• optimal: 4n - 8 edges

• optimal: 4n - 8 edges

• optimal: 4n - 8 edges

Construction:

• quadrangulation

• optimal: 4n - 8 edges

- quadrangulation
- pairs of crossing edges

• optimal: 4n - 8 edges

- quadrangulation
- pairs of crossing edges

• optimal: 4n - 8 edges

- quadrangulation
- pairs of crossing edges
- sparse maximal:

• optimal: 4n - 8 edges

- quadrangulation
- pairs of crossing edges
- sparse maximal:
 - Hermites

• optimal: 4n - 8 edges

- quadrangulation
- pairs of crossing edges
- sparse maximal:
 - Hermites

	Upper Bound	
planar	3n - 6	
1-planar	4n - 8	

	Upper Bound	
planar	3n - 6	
1-planar	4n - 8	
2-planar	5n - 10	$[Pach, T \acute{o}th 97]$
3-planar	6n - 12	
4-planar	7n - 14	

	Upper Bound	
planar	3n - 6	
1-planar	4n - 8	
2-planar	5n - 10	$[Pach, T \acute{o}th 97]$
3-planar	6n - 12	
4-planar	7n - 14	
k-planar	(k+2)(n-2)	

	Upper Bound	
planar	3n - 6	
1-planar	4n - 8	
2-planar	5n - 10	$[Pach, T \acute{o}th 97]$
3-planar	6n - 12	
4-planar	7n - 14	
k-planar	$(k+2)(n-2)$ 4.1208 \sqrt{kn}	[Pach, Tóth 97]

	Upper Bound	d	
planar	3n - 6		
1-planar	4n - 8		
2-planar	5n - 10		$[Pach, T \acute{o}th 97]$
3-planar	6 <u>n</u> 12	5.5n - 11	$[Pach \ et \ al. \ 06]$
4-planar	7 <u>n</u> 14	6n - 12	[Ackerman 15]
k-planar	(k+2)(n-2)	$4.1208\sqrt{k}n$	$[Pach, T \acute{o}th 97]$

	Upper Bound	
planar	3n - 6	
1-planar	4n - 8	
2-planar	(5n-10)Tight ?	$[Pach, T \acute{o}th 97]$
3-planar	6n - 12 $(5.5n - 11)$	$[Pach \ et \ al. \ 06]$
4-planar	7n - 14 $6n - 12$	[Ackerman 15]
k-planar	$(k+2)(n-2)$ 4.1208 $\sqrt{k}n$	$[Pach, T \acute{o}th 97]$

 $k \leq 2 \rightarrow \mathbf{Tight}$ $k \geq 3 \rightarrow ?$

non-simple 3-planar graphs:

non-simple 3-planar graphs:

non-simple 3-planar graphs:

non-simple 3-planar graphs:

non-simple 3-planar graphs:

non-simple 3-planar graphs:

non-simple 3-planar graphs:

non-simple 3-planar graphs:

Theorem: Non simple 3-planar graphs on n vertices have at most 5.5n - 11 edges. This bound is tight.

Theorem: Non simple 3-planar graphs on n vertices have at most 5.5n - 11 edges. This bound is tight.

Proof:

- 1. upper bound
- 2. construction

Theorem: Non simple 3-planar graphs on n vertices have at most 5.5n - 11 edges. This bound is tight.

Proof:

- 1. upper bound
- 2. construction
- For simple graphs the same bound holds
- The bound is not known to be tight
1-planar

Planar graph with faces of length 6

• Euler's formula: $n - 2 = e_p - f$

- Euler's formula: $n 2 = e_p f$
- Planar edges: $e_p = 3f$

- Euler's formula: $n 2 = e_p f \implies n 2 = 2f$
- Planar edges: $e_p = 3f$

- Euler's formula: $n 2 = e_p f \implies n 2 = 2f$
- Planar edges: $e_p = 3f$
- Interior edges: $e_c = 8f$

- Euler's formula: $n 2 = e_p f \implies n 2 = 2f$
- Planar edges: $e_p = 3f$
- Interior edges: $e_c = 8f$
- Total edges: $e = e_p + e_c = 11f$

$$\Rightarrow e = \frac{11}{2}(n-2) = 5.5n - 11$$

 v_4

 v_5

General Idea:

General Idea:

- Plane subgraph G_p
 - spanning, connected
 - maximum number of edges e_p

General Idea:

- Plane subgraph G_p
 - spanning, connected
 - maximum number of edges e_p

planar edges: $e_p \leq 3n - 6$

General Idea:

- Plane subgraph G_p
 - spanning, connected
 - maximum number of edges e_p

planar edges: $e_p \leq 3n - 6$

• Bound the remaining edges e_c

crossing edges: e_c

• crossing edges cross with planar edges

- Maximal plane subgraph G_p
 - triangular faces

•
$$e_p = 3n - 6$$

- Maximal plane subgraph G_p
 - triangular faces

•
$$e_p = 3n - 6$$

- Maximal plane subgraph G_p
 - triangular faces
 - $e_p = 3n 6$

• crossing edges

- Maximal plane subgraph G_p
 - triangular faces
 - $e_p = 3n 6$

• crossing edges

• a crossing edge consists of sticks and middle parts

- Maximal plane subgraph G_p
 - triangular faces
 - $e_p = 3n 6$

- crossing edges
- a crossing edge consists of sticks and middle parts
- Maximal plane subgraph G_p
 - triangular faces
 - $e_p = 3n 6$

- crossing edges
- a crossing edge consists of sticks and middle parts

- Maximal plane subgraph G_p
 - triangular faces
 - $e_p = 3n 6$

- crossing edges
 - middle part

• a crossing edge consists of *sticks* and *middle parts*

- Maximal plane subgraph G_p
 - triangular faces
 - $e_p = 3n 6$
- crossing edges
 - middle part

- a crossing edge consists of sticks and middle parts
- sticks lie inside faces
- count sticks:
 - $\Rightarrow 2e_c = \# STICKS$

A triangular face has at most 3 sticks

A triangular face has at most 3 sticks

A triangular face has at most 3 sticks

• If *all faces* have 3 sticks

$$e_c = 3f/2 = 3(n-2)$$

 $e = e_p + e_c = 6(n-2)$
 $(e_p = 3n - 6)$

A triangular face has at most 3 sticks

• If *all faces* have 3 sticks

$$e_c = 3f/2 = 3(n-2)$$

 $e = e_p + e_c = 6(n-2)$
 $(e_p = 3n - 6)$

• **Total:** 6n - 12

A triangular face has at most 3 sticks

$$e_c = 3f/2 = 3(n-2)$$

 $e = e_p + e_c = 6(n-2)$
 $(e_p = 3n - 6)$

• If *all faces* have 3 sticks • If *half of faces* have 3 sticks

$$\begin{array}{l} \mathbf{e_c} = 3f/4 + 2f/4 = 5(n-2)/2 \\ e = \mathbf{e_p} + \mathbf{e_c} = 11(n-2)/2 \end{array}$$

• Total: 6n - 12

A triangular face has at most 3 sticks

$$e_c = 3f/2 = 3(n-2)$$

 $e = e_p + e_c = 6(n-2)$
 $(e_p = 3n - 6)$

• Total: 6n - 12

• If *all faces* have 3 sticks • If *half of faces* have 3 sticks

$$\begin{array}{l} \mathbf{e_c} = 3f/4 + 2f/4 = 5(n-2)/2 \\ e = \mathbf{e_p} + \mathbf{e_c} = 11(n-2)/2 \end{array}$$

• Total: 5.5n - 11

A triangular face has at most 3 sticks

$$e_c = 3f/2 = 3(n-2)$$

 $e = e_p + e_c = 6(n-2)$
 $(e_p = 3n - 6)$

• If *all faces* have 3 sticks • If *half of faces* have 3 sticks

$$\begin{array}{l} \mathbf{e_c} = 3f/4 + 2f/4 = 5(n-2)/2 \\ e = \mathbf{e_p} + \mathbf{e_c} = 11(n-2)/2 \end{array}$$

- **Total:** 6*n* − 12 • Total: 5.5n - 11
 - Prove that at most half faces have 3 sticks

At most half faces have 3 sticks

At most half faces have 3 sticks

At most half faces have 3 sticks

• Associate (uniquely) a face with 3 sticks with a face with at most 2 sticks

(2, 1, 0)

At most half faces have 3 sticks

At most half faces have 3 sticks

• Associate (uniquely) a face with 3 sticks with a face with at most 2 sticks

• other cases \rightarrow similarly

Maximal plane subgraph G_p

• triangular faces

•
$$e_p = 3n - 6$$

Maximal plane subgraph G_p

- triangular faces
- $e_p = 3n 6$

- 11 lemmas
 - connectivity of G_p
 - properties of sticks and middle parts

Maximal plane subgraph G_p

- triangular faces
- $e_p = 3n 6$

- 11 lemmas
 - connectivity of G_p
 - properties of sticks and middle parts
- assumptions
 - -G is optimal
 - $-G_p$ is maximal
 - $-\Gamma(G)$ has minimum number of crossings

Open Problems

- Characterization of optimal 3-planar graphs
- Tight upper bound for simple 3-planar
- Is G_p fully triangulated for k = 4?

Open Problems

- Characterization of optimal 3-planar graphs
- Tight upper bound for simple 3-planar
- Is G_p fully triangulated for k = 4?

