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block crossing

We want to minimize block crossings!



Previous Results – Simple Crossings

[Kostitsyna et al, GD’15]

FPT for #characters

upper and lower bounds for some cases with pairwise
meetings

NP-hardness
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Bundled Crossings [Fink et al., 2016]

Bundled Crossing Number [Alam, Fink, Pupyrev; next talk]
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Storylines & Block Crossings

block crossing

permutations π π′

O(k3) possible
block crossings

storyline visualization

π

π supports
meeting

Given n meetings
of k characters,
find permutations
transformed by
min. # block crossings.
(Must support all meetings.)

Problem definition:
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Our Results

recognize crossing-free instances

NP-hardness

approximation

FPT/exact algorithms

greedy heuristic for pairwise meetings
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Crossing-Free Storylines Visualizations

π supports each meeting

group hypergraph H = (C , Γ ) is interval hypergraph

groups that meet

interval hypergraph property can be checked in O(k2) time

[Trotter, Moore, 1976]
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Approximation Algorithm

all meetings of size ≤ d (constant)
no repeated meetings

idea:
1. choose starting order π that supports many meetings
2. temporarily change order for each unsupported meeting

≤ 2(d − 1) block crossings

meetings supported by π are free

Lemma: starting order π has α
unsupported meetings ⇒
at least 4α/(3d2) block
crossings necessary

approximate αOPT

⇒ approximate
block crossings
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Approximation Algorithm

find π minimizing #unsupported meetings

↔ remove minimum #meetings so that storyline crossing-free

↔ remove minimum #hyperedges so that H is interval
hypergraph

Theorem: Interval Hypergraph Edge Deletion
admits a (d + 1)-approximation (constant rank d).

Theorem: We can find a (3(d2 − 1)d2/2)-approximation for
the minimum number of block crossings in storyline
visualizations in O(kn) time.
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Interval Hypergraph Edge Deletion

Remove minimum number of hyperedges so that
H = (V , E ) becomes interval hypergraph

NP-hard for graphs:
remove all but n − 1 edges →
Hamiltonian path
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characterization of interval hypergraphs by forbidden
subhypergraphs

O1 O2F1

C3 C4

F2 Fd−2

M1 M2 Md−1

outline:
– iteratively: search for forbidden
subhypergraphs except Cd+2, . . . &
completely remove them

– result: cyclic generalization of interval
hypergraph; break optimally

≤ d + 1 hyperedges

Theorem: no forbidden subhypergraph except
Cd+2, . . . ⇒ structure

can cut optimally

proof skipped
(several lemmas &
case distinctions)

Theorem: Interval Hypergraph Edge Deletion
admits a (d + 1)-approximation (constant rank d).
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first idea: modify FPT of Kostitsyna et al. for block
crossings

p
erm

u
tation

s

meetings

find minimum-cost path

runtime: O(k!2n)

new idea: 1 edge ↔ block crossing

O(k3) different block crossings

Alternative: Can minimize block crossings in
O(k!kβ(β + kn)) time and O(βk) space,
where β = opt. #block crossings

Theorem: We can minimize block crossings in O(k!k3n) time
and O(k!kn) space.

also works for single crossings
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2-Character Meetings – A Greedy Algorithm

only pairwise meetings

single block crossing suffices to bring pair together

single block crossing can support several new meetings

greedily try to support largest prefix of future meetings
with single block crossing

O(kn)-time algorithm

use random or best start permutation

some preliminary experiments; e.g.:
greedy with best start permutation
for k = 5, n = 12:
56% opt., 38% + 1bc, 5% + 2bc,
1% + 3bc
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Conclusion

can identify crossing-free solution
new exact algorithms
minimizing block crossings is hard
approximation algorithm
greedy heuristic for pairwise meetings

Open questions:

generalize approximation / approximation for simple
crossings?
can greedy algorithm be generalized?

Thank you!
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