

Md. Jawaherul Alam Martin Fink Sergey Pupyrev

GD 2016 – Athens September 20

Md. Jawaherul Alam

٠

•

Md. Jawaherul Alam

•

Md. Jawaherul Alam

Md. Jawaherul Alam

٠

Md. Jawaherul Alam

Md. Jawaherul Alam

Md. Jawaherul Alam

Md. Jawaherul Alam

Md. Jawaherul Alam

Bundled Crossings

- Crossings between two bundles of edges
- Contained within disjoint pseudodisks

Md. Jawaherul Alam

minimum number of bundles to group all the crossings

Md. Jawaherul Alam

3 bundles

minimum number of bundles to group all the crossings

Md. Jawaherul Alam

3 bundles

2 bundles

minimum number of bundles to group all the crossings

Md. Jawaherul Alam

minimum number of bundles to group all the crossings

Md. Jawaherul Alam

minimum number of bundles to group all the crossings

Md. Jawaherul Alam

Unrestricted Drawing Simple Drawing

Md. Jawaherul Alam

٠

Circular Drawing

- simple drawing
- all vertices on a circle
- all edges inside the circle

Md. Jawaherul Alam

Circular Drawing

- simple drawing
- all vertices on a circle
- all edges inside the circle
- Fixed order vs flexible order of vertices

Md. Jawaherul Alam

Related Work

Minimizing Crossings

- NP-hard, even for cubic graphs
- No constant approximation unless $P \neq NP$

[Cabello 2013]

• $O(n^{9/10})$ -approximation for bounded degree [Chuzhoy 2011]

Bundled Crossings

- NP-hard, for a fixed embedding [Fink et al. 2013]
- constant-factor approximation for circular layout

Md. Jawaherul Alam

Related Work

Minimizing Crossings

- NP-hard, even for cubic graphs
- No constant approximation unless $P \neq NP$

[Cabello 2013]

• $O(n^{9/10})$ -approximation for bounded degree [Chuzhoy 2011]

Bundled Crossings

- NP-hard, for a fixed embedding [Fink et al. 2013]
- constant-factor approximation for circular layout

Md. Jawaherul Alam

• We address the problem in the fixed embedding setting

Md. Jawaherul Alam

• We address the problem in the fixed embedding setting

Md. Jawaherul Alam

• We address the problem in the fixed embedding setting

• We address the problem in the fixed embedding setting

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \ge g(G)$]:

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \ge g(G)$]:

For each bundle, create a handle and re-route

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \ge g(G)$]:

For each bundle, create a handle and re-route

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \ge g(G)$]:

For each bundle, create a handle and re-route

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \ge g(G)$]:

For each bundle, create a handle and re-route

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \leq g(G)$]:

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \leq g(G)$]:

re-route each edge touching the boundary through outside

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \leq g(G)$]:

re-route each edge touching the boundary through outside

Md. Jawaherul Alam

Theorem

For unrestricted drawings of G, bc(G) = g(G)

Proof [$bc(G) \leq g(G)$]:

re-route each edge touching the boundary through outside

Md. Jawaherul Alam

Theorem

For simple drawings of G, $bc(G) \ge g(G)$. There is some G for which bc(G) > g(G).

Md. Jawaherul Alam

• We address the problem in the fixed embedding setting

Md. Jawaherul Alam

• We address the problem in the fixed embedding setting

Md. Jawaherul Alam

Bundled Crossing in Circular Layout

Theorem

For fixed order circular layout of G, $bc(G) \ge m/16$.

Md. Jawaherul Alam

Bundled Crossing in Circular Layout

Theorem

For fixed order circular layout of G, $bc(G) \ge m/16$.

Assume that the edges form a matching

8

Md. Jawaherul Alam

Bundled Crossing in Circular Layout

Theorem

For fixed order circular layout of G, $bc(G) \ge m/16$.

Md. Jawaherul Alam

٠

Md. Jawaherul Alam

٠

Md. Jawaherul Alam

Future Work

- Circular bundled crossing: complexity results NP-hard?
- Better approximation for sparse graphs

Md. Jawaherul Alam

Future Work

- Circular bundled crossing: complexity results NP-hard?
- Better approximation for sparse graphs

Md. Jawaherul Alam