Hanani–Tutte for radial drawings

Radoslav Fulek, IST Austria

(Marcus Schaefer, De Paul Chicago and Michael Pelsmajer, IIT Chicago)

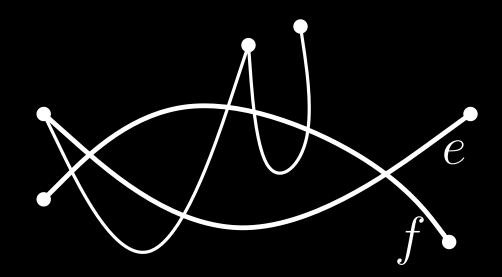
Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

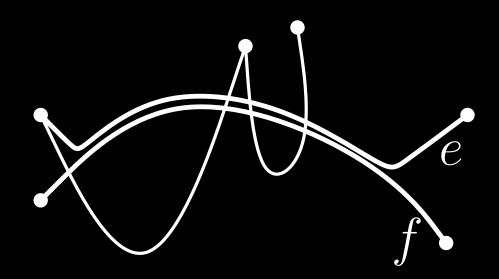
Shapiro (1957), Wu (1970s): Given a graph G = (V, E). We can test in a polynomial time whether G can be drawn so that **no two non-adjacent** edges of G cross an **odd** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

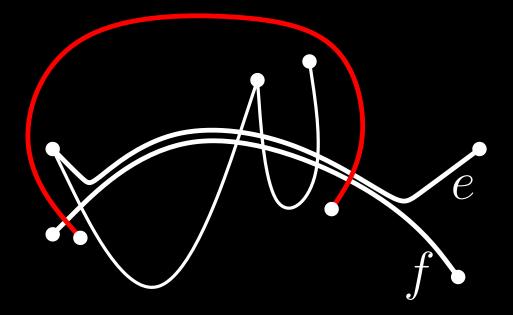
Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.



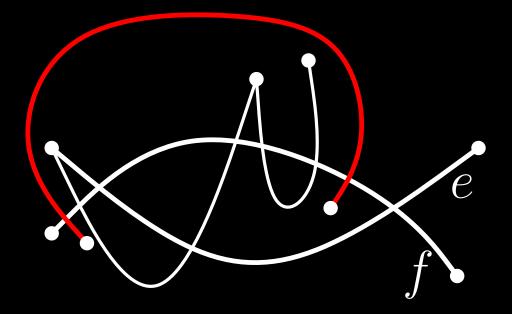
Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.



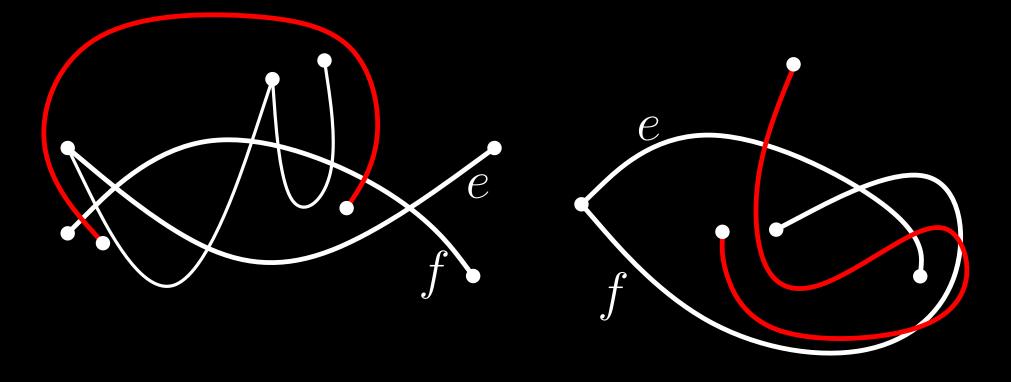
Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.



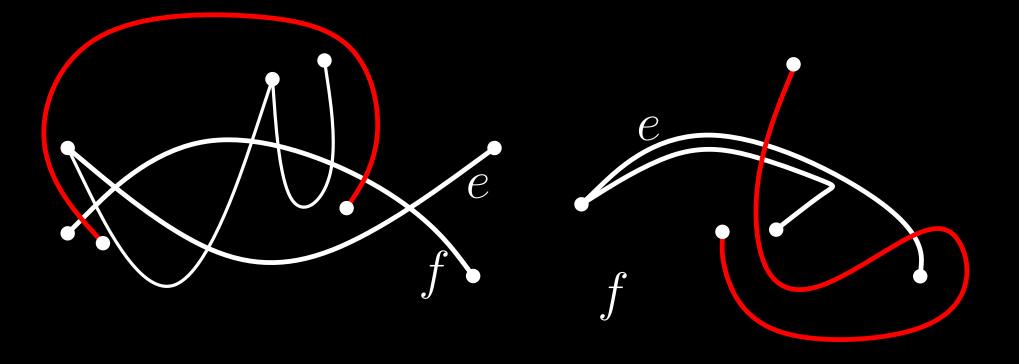
Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

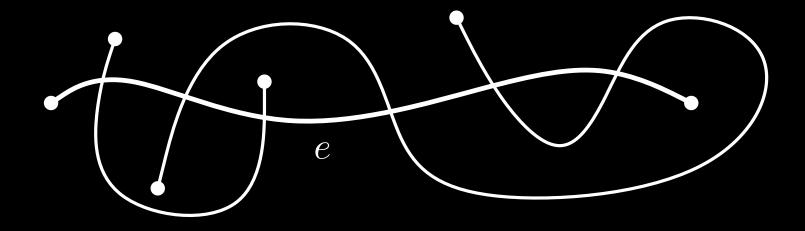


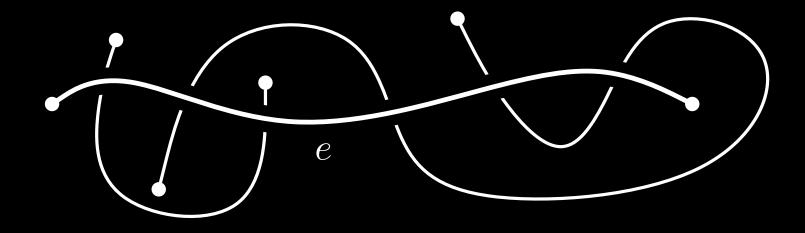
Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

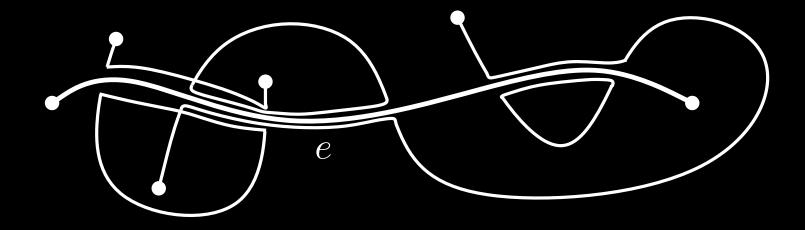


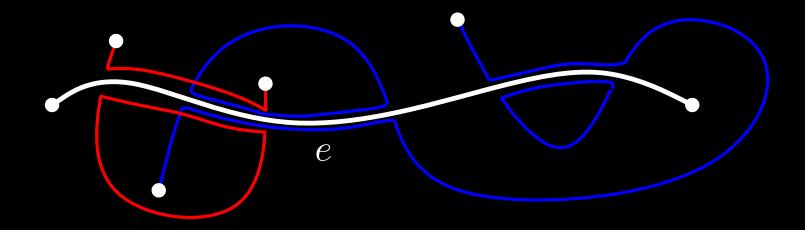
Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

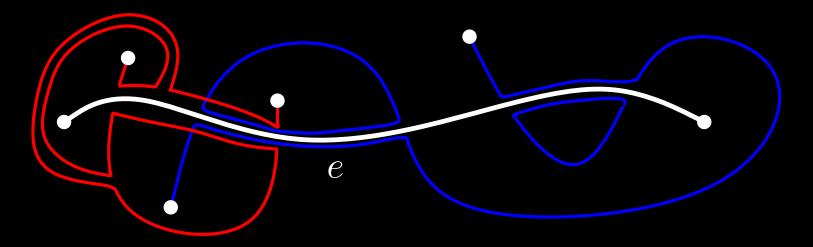


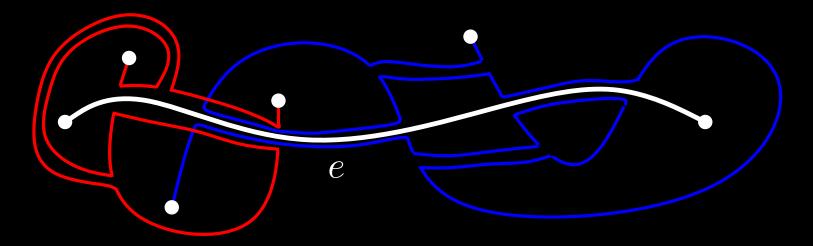












Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Cairns & Nikolayevsky (2000): A graph is *embeddable on an* **orientable** *surface* if it can be drawn in the surface such that any two edges cross an **even** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Cairns & Nikolayevsky (2000)+Pelsmajer, Schaefer, and Štefankovič (2007): A graph is embeddable on a surface if it can be drawn in the surface such that any two edges cross an **even** number of times. Moreover, in the embedding the order of the end pieces of the edges at the vertices is the same.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Cairns & Nikolayevsky (2000)+Pelsmajer, Schaefer, and Štefankovič (2007): A graph is embeddable on a surface if it can be drawn in the surface such that any two edges cross an **even** number of times. Moreover, in the embedding the order of the end pieces of the edges at the vertices is the same.

Conjecture: A graph is *embeddable on a surface* if it can be drawn in the surface such that any two **non-adjacent** edges cross an **even** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Cairns & Nikolayevsky (2000)+Pelsmajer, Schaefer, and Štefankovič (2007): A graph is embeddable on a surface if it can be drawn in the surface such that any two edges cross an **even** number of times. Moreover, in the embedding the order of the end pieces of the edges at the vertices is the same.

Conjecture: A graph is *embeddable on a surface* if it can be drawn in the surface such that any two **non-adjacent** edges cross an **even** number of times.

Verified for the projective plane by *Pelsmajer et al.* (2009), de Verdiere et al. (2016).

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Shapiro (1957), Wu (1970s): Given a graph G = (V, E). We can test in a polynomial time whether G can be drawn so that **no two non-adjacent** edges of G cross an **odd** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Shapiro (1957), Wu (1970s): Given a graph G = (V, E). We can test in a polynomial time whether G can be drawn so that **no two non-adjacent** edges of G cross an **odd** number of times.

The algorithm reduces the problem to solving a sparse linear system over $\mathbb{Z}/2\mathbb{Z}$ with $O(|V|^2)$ variables and $O(|V|^2)$ equations solvable in $\tilde{O}(|V|^4)$, Wiedemann (1986).

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Shapiro (1957), Wu (1970s): Given a graph G = (V, E). We can test in a polynomial time whether G can be drawn so that **no two non-adjacent** edges of G cross an **odd** number of times.

The algorithm reduces the problem to solving a sparse linear system over $\mathbb{Z}/2\mathbb{Z}$ with $O(|V|^2)$ variables and $O(|V|^2)$ equations solvable in $\tilde{O}(|V|^4)$, Wiedemann (1986).

Linear time algorithm was given by Hopcroft & Tarjan (1970)

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Weak Hanani–Tutte theorem for monotone drawings

Pach & Tóth (2004): If we can draw a graph G in the plane such that

(i) every pair of edges cross evenly; and

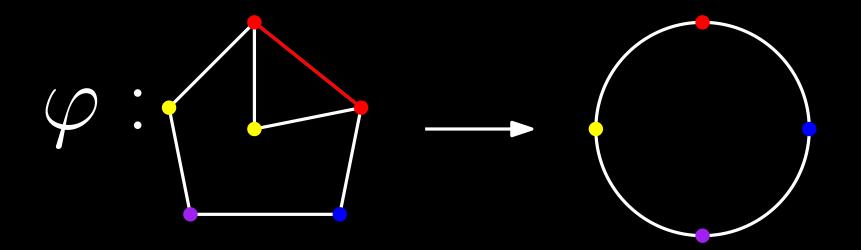
(ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds; x(v) is unchanged for every vertex and the order of the end pieces of the edges at the vertices is unchanged.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

M. Skopenkov (2003): Let T be a graph without vertices of degree > 3. Suppose that T has k vertices. A simplicial map $\varphi: T \to \mathbb{S}^1 \subset \mathbb{R}^2$ is approximable by embeddings if and only if the van Kampen obstruction $v(\varphi) = 0$ and $\varphi^{(k)}$ does not contain standard windings of degree $d \neq \pm 1$, odd.

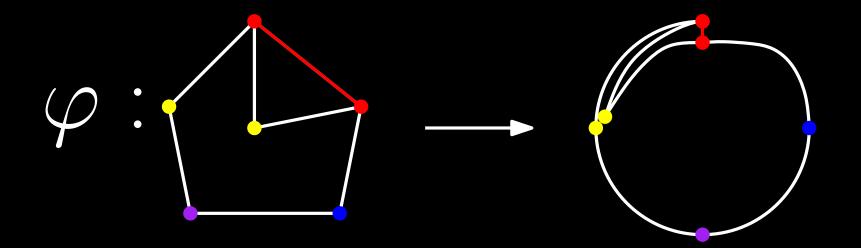
Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

M. Skopenkov (2003): Let T be a graph without vertices of degree > 3. Suppose that T has k vertices. A simplicial map $\varphi: T \to \mathbb{S}^1 \subset \mathbb{R}^2$ is approximable by embeddings if and only if the van Kampen obstruction $v(\varphi) = 0$ and $\varphi^{(k)}$ does not contain standard windings of degree $d \neq \pm 1$, odd.



Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

M. Skopenkov (2003): Let T be a graph without vertices of degree > 3. Suppose that T has k vertices. A simplicial map $\varphi: T \to \mathbb{S}^1 \subset \mathbb{R}^2$ is approximable by embeddings if and only if the van Kampen obstruction $v(\varphi) = 0$ and $\varphi^{(k)}$ does not contain standard windings of degree $d \neq \pm 1$, odd.



F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): Given a graph G = (V, E) whose vertices are totally ordered we can test in $O(|V|^2)$ time if there exists an embedding of G in which x(v)'s, $v \in V$, respect the given order and x(e)'s, $e \in E$, are injective

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): Given a graph G = (V, E) whose vertices are totally ordered we can test in $O(|V|^2)$ time if there exists an embedding of G in which x(v)'s, $v \in V$, respect the given order and x(e)'s, $e \in E$, are injective

The algorithm reduces the problem to 2-SAT.

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): Given a graph G = (V, E) whose vertices are totally ordered we can test in $O(|V|^2)$ time if there exists an embedding of G in which x(v)'s, $v \in V$, respect the given order and x(e)'s, $e \in E$, are injective

The algorithm reduces the problem to 2-SAT. Linear time algorithm was given by *Jünger & Leipert (2000)*.

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): Given a graph G = (V, E) whose vertices are totally ordered we can test in $O(|V|^2)$ time if there exists an embedding of G in which x(v)'s, $v \in V$, respect the given order and x(e)'s, $e \in E$, are injective

The algorithm reduces the problem to 2-SAT. *Chimani et al. (2013)* Our algorithm performs well in practice.

Radial Drawings

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

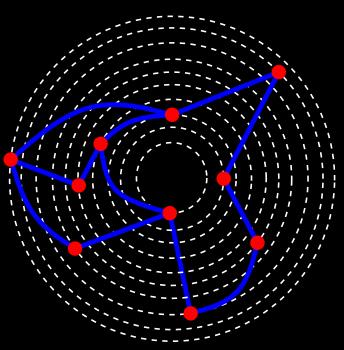
The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

Given a graph G = (V, E) whose vertices are totally ordered a radial drawing of G is a drawing on the cylinder C such that (i) Values $I(v), v \in V$, respect the given order; and (ii) $I(e), e \in E$, are injective.

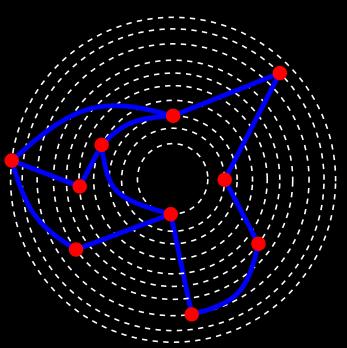
Brandenburg et al. (2005) Radial planarity testing can be done in linear time

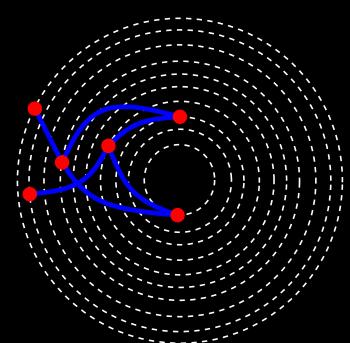
The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

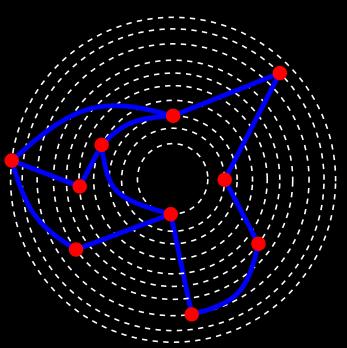


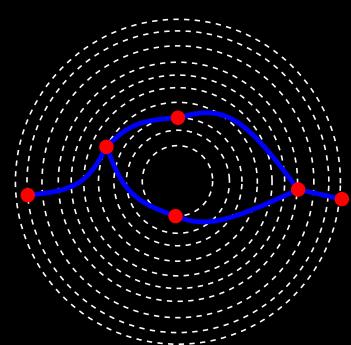
The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.



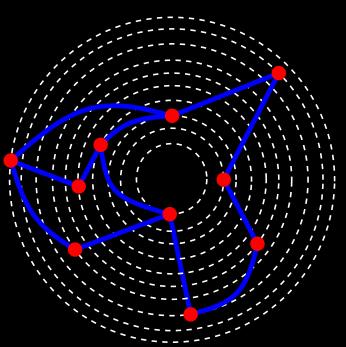


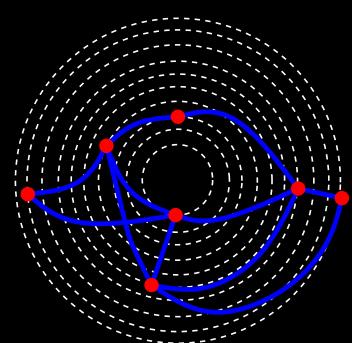
The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.





The cylinder C is $I \times S^1$, where I is unit interval and S^1 is a unit circle. I(.) is the projection to I.





The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

Given a graph G = (V, E) whose vertices are totally ordered a radial drawing of G is a drawing on the cylinder C such that (i) Values $I(v), v \in V$, respect the given order; and (ii) $I(e), e \in E$, are injective.

F., Pelsmajer & Schaefer (2016+): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

F., Pelsmajer & Schaefer (2016): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

F., Pelsmajer & Schaefer (2016): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

Prove the theorem without the word **non-adjacent** and maintaining the order of the end pieces of the edges at the vertices. (*the weak variant*)

F., Pelsmajer & Schaefer (2016): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

Prove the theorem without the word **non-adjacent** and maintaining the order of the end pieces of the edges at the vertices. (*the weak variant*)

Only the first vertex, last vertex and vertices participating in a \leq 2-cut are locally uncorrectable.

F., Pelsmajer & Schaefer (2016): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

Prove the theorem without the word **non-adjacent** and maintaining the order of the end pieces of the edges at the vertices. (*the weak variant*)

Only the first vertex, last vertex and vertices participating in a \leq 2-cut are locally uncorrectable.

Reduce ≤ 2 -separations; *the weak variant* in the base case.

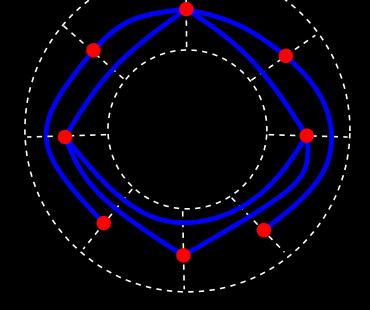
The cylinder C is $I \times S^1$, where I is unit interval and S^1 is a unit circle. $S^1(.)$ is the projection to S^1 .

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

Given a graph $G = (V, \overrightarrow{E})$, whose vertices are cylically ordered, a cyclic drawing of G is a drawing on the cylinder C such that (i) Values $\mathbb{S}^1(v)$, $v \in V$, respect the given order; and (ii) $\mathbb{S}^1(e)$, $e \in \overrightarrow{E}$, are injective and directed clockwise.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

Given a graph $G = (V, \overrightarrow{E})$, whose vertices are cylically ordered, a cyclic drawing of G is a drawing on the cylinder C such that (i) Values $\mathbb{S}^1(v)$, $v \in V$, respect the given order; and (ii) $\mathbb{S}^1(e)$, $e \in \overrightarrow{E}$, are injective and directed clockwise.



The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

Given a graph $G = (V, \vec{E})$, whose vertices are cylically ordered, a cyclic drawing of G is a drawing on the cylinder C such that (i) Values $\mathbb{S}^1(v)$, $v \in V$, respect the given order; and (ii) $\mathbb{S}^1(e)$, $e \in \vec{E}$, are injective and directed clockwise.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

Given a graph $G = (V, \vec{E})$, whose vertices are cylically ordered, a cyclic drawing of G is a drawing on the cylinder C such that (i) Values $\mathbb{S}^1(v)$, $v \in V$, respect the given order; and (ii) $\mathbb{S}^1(e)$, $e \in \vec{E}$, are injective and directed clockwise.